E-Print Archive

There are 4021 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Untwisting and Disintegration of a Solar Filament Associated with Photospheric Flux Cancellation View all abstracts by submitter

Huadong Chen   Submitted: 2018-12-19 02:27

Using the high-resolution observations from New Vacuum Solar Telescope (NVST) jointly with the Solar Dynamics Observatory data, we investigate two successive confined eruptions (Erup1 and Erup2) of a small filament in a decaying active region on 2017 November 10. During the process of Erup1, the overlying magnetic arcade is observed to inflate with the rising filament at beginning and then stop the ongoing of the explosion. In the hot EUV channel, a coronal sigmoidal structure appears during the first eruption and fade away after the second one. The untwisting rotation and disintegration of the filament in Erup2 are clearly revealed by the NVST Hα intensity data, hinting at a pre-existing twisted configuration of the filament. By tracking two rotating features in the filament, the average rotational angular velocity of the unwinding filament is found to be ~10.5 degree/min. A total twist of ~1.3 π is estimated to be stored in the filament before the eruption, which is far below the criteria for kink instability. In the course of several hours prior to the event, some photospheric flux activities, including the flux convergence and cancellation, are detected around the northern end of the filament, where some small-scale EUV brightenings are also captured. Moreover, strongly-sheared transverse fields are found in the cancelling magnetic features from the vector magnetograms. Our observational results support the flux cancellation model, in which the interaction between the converging and sheared opposite-polarity fluxes destabilizes the filament and triggers the ensuing ejection.

Authors: Huadong Chen, Ruisheng Zheng, Leping Li, Suli Ma, Yi Bi, and Shuhong Yang
Projects: New Vacuum Solar Telescope (NVST),SDO-AIA,SDO-HMI

Publication Status: Accepted for publication in the ApJ
Last Modified: 2018-12-19 12:30
Go to main E-Print page  No unique solution to the seismological problem of standing kink MHD waves  Modeling of the sunspot-associated microwave emission using a new method of DEM inversion  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University