E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks View all abstracts by submitter

G. Allen Gary   Submitted: 2018-12-19 15:56

Recent advances in the field of neural networks have made convolutional neural networks (CNNs) a conventional algorithm for many computer vision tasks including image recognition and object detection. Because modeling the coronal magnetic field of the Sun is an important objective in heliophysics, this study extends the use of CNNs to the application of coronal magnetic field modeling. We employ a simple one-parameter model of linear force-free magnetic fields (LFFFs) to model active regions of multiple dipolar configurations including the Active Region (AR) 11117. We use state-of-the-art architectures such as ResNet and Inception networks, and develop our customized network "SolarNet" to determine the associated LFFF parameter α from a set of pseudo-coronal loop images, which are generated using the modeled active regions. Our results show very high accuracy of determining the LFFF parameter α thereby demonstrating the effectiveness of the generic and customized deep CNN architectures to understand the coronal magnetic field.

Authors: B. Benson , W. David Pan, G. Allen Gary , Q. Hu , T. Staudinger
Projects: SDO-AIA

Publication Status: Accepted for Astronomy and Computing
Last Modified: 2018-12-21 18:48
Go to main E-Print page  The development of lower-atmosphere turbulence early in a solar flare  No unique solution to the seismological problem of standing kink MHD waves  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University