E-Print Archive

There are 4080 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks View all abstracts by submitter

G. Allen Gary   Submitted: 2018-12-19 15:56

Recent advances in the field of neural networks have made convolutional neural networks (CNNs) a conventional algorithm for many computer vision tasks including image recognition and object detection. Because modeling the coronal magnetic field of the Sun is an important objective in heliophysics, this study extends the use of CNNs to the application of coronal magnetic field modeling. We employ a simple one-parameter model of linear force-free magnetic fields (LFFFs) to model active regions of multiple dipolar configurations including the Active Region (AR) 11117. We use state-of-the-art architectures such as ResNet and Inception networks, and develop our customized network "SolarNet" to determine the associated LFFF parameter α from a set of pseudo-coronal loop images, which are generated using the modeled active regions. Our results show very high accuracy of determining the LFFF parameter α thereby demonstrating the effectiveness of the generic and customized deep CNN architectures to understand the coronal magnetic field.

Authors: B. Benson , W. David Pan, G. Allen Gary , Q. Hu , T. Staudinger
Projects: SDO-AIA

Publication Status: Accepted for Astronomy and Computing
Last Modified: 2018-12-21 18:48
Go to main E-Print page  The development of lower-atmosphere turbulence early in a solar flare  No unique solution to the seismological problem of standing kink MHD waves  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetic Helicity from Multipolar Regions on the Solar Surface
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Exoplanet predictions based on harmonic orbit resonances
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling
Interplanetary Type IV Bursts
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
Detection of spike-like structures near the front of type-II burstsA
High resolution observations with Artemis-JLS, (II) Type IV associated intermediate drift bursts
Oscillation of a small Hα surge in a solar polar coronal hole
Radio Observations of the January 20, 2005 X-Class Event
Fine Structure of Metric Type-IV Radio Bursts Observed with the ARTEMIS-IV Radio Spectrograph: Association with Flares and Coronal Mass Ejections
Spectral Analysis of the September 2017 Solar Energetic Particle Events
Solar Energetic Particle Events Observed by the PAMELA Mission

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University