E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations View all abstracts by submitter

Alexander Kosovichev   Submitted: 2019-01-14 19:11

Torsional oscillations represent bands of fast and slow zonal flows around the Sun, which extend deep into the convection zone and migrate during solar cycles towards the equator following the sunspot butterfly diagram. Analysis of helioseismology data obtained in 1996-2018 for almost two solar cycles reveals zones of deceleration of the torsional oscillations inside the Sun due to dynamo-generated magnetic field. The zonal deceleration originates near the bottom of the convection zone at high latitudes, and migrates to the surface revealing patterns of magnetic dynamo waves predicted by the Parker's dynamo theory. The analysis reveals that the primary seat of the solar dynamo is located in a high-latitude zone of the tachocline. It suggests a dynamo scenario that can explain 'extended solar cycles' previously observed in the evolving shape of the solar corona. The results show a substantial decrease of the zonal acceleration in the current solar cycle and indicate further decline of activity in the next solar cycle. Although the relationship between the magnitude of zonal deceleration and the amount of emerged toroidal field that leads to formation of sunspots is not yet established, the results open a new perspective for solar cycle modeling and prediction using helioseismology data.

Authors: Alexander G. Kosovichev and Valery V. Pipin
Projects: SDO-HMI,SoHO-MDI

Publication Status: accepted for publication in ApJL
Last Modified: 2019-01-16 11:18
Go to main E-Print page  Seismological determination of the Alfv?n speed and plasma-beta in solar photospheric bright points  Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University