E-Print Archive

There are 4553 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes View all abstracts by submitter

Marianna Korsos   Submitted: 2019-01-21 01:12

There is a wide range of eruptions in the solar atmosphere which contribute to space weather, including the major explosions of radiation known as flares. To examine pre-event behavior in delta-spot regions, we use here a method based on the weighted horizontal gradient of magnetic field (WG_M), defined between opposite polarity umbrae at the polarity inversion line of active regions (ARs) as measured using from the Debrecen Heliophysical Observatory catalogues. In this work, we extend the previous analysis of high-energy flares to include both medium (M) and low-energy (C and B) flares. First, we found a logarithmic relationship between the log value of highest flare class intensity (from B- to X-class) in a δ-spot AR and the maximum value of WG_M of the 127 ARs investigated. We confirm a trend in the convergence-divergence phase of the barycenters of opposite polarities in the vicinity of the polarity inversion line. The extended sample (i) affirms the linear connection between the durations of the convergence-divergence phases of barycenters of opposite polarities in delta-spot regions up to flare occurrence and (ii) provides a geometric constraint for the location of flare emission around the polarity inversion line. The method provides a tool to possibly estimate the likelihood of a subsequent flare of the same or larger energy.

Authors: Marianna B. Korsos, Shuhong Yang, Robert Erdelyi
Projects: None

Publication Status: accepted in JSWSC
Last Modified: 2019-01-22 16:08
Go to main E-Print page  Coronal Imaging with the Solar UltraViolet Imager  Seismological determination of the Alfv?n speed and plasma-beta in solar photospheric bright points  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point
Characterising fast-time variations in the hard X-ray time profiles of solar flares using Solar Orbiter's STIX
The quiet sun at mm wavelengths as seen by ALMA
Explosive Events in the Quiet Sun Near and Beyond the Solar Limb Observed with the Interface Region Imaging Spectrograph (IRIS)
Multi-stage reconnection powering a solar coronal jet
A Statistical Analysis of Magnetic Field Changes in the Photosphere during Solar Flares Using High-cadence Vector Magnetograms and Their Association with Flare Ribbons
Numerical Study on Excitation of Turbulence and Oscillation in Above-the-loop-top Region of a Solar Flare
Oscillatory reconnection as a plasma diagnostic in the solar corona
The independence of oscillatory reconnection periodicity from the initial pulse
Oscillatory Reconnection of a 2D X-point in a hot coronal plasma
Formation Of The Lyman Continuum During Solar Flares
MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field
Unfolding Drift Effects for Cosmic Rays over the Period of the Sun's Magnetic Field Reversal
Problems in Observation and Identification of Torsional Waves in the Lower Solar Atmosphere
Solar Orbiter and SDO Observations, and Bifrost MHD Simulations of Small-scale Coronal Jets
Dominance of Bursty over Steady Heating of the 48 MK Coronal Plasma in a Solar Active Region: Quantification Using Maps of Minimum, Maximum, and Average Brightness
Solar flare hard X-rays from the anchor points of an eruptive filament
Plasmoids, Flows, and Jets During Magnetic Reconnection in a Failed Solar Eruption
Connecting Chromospheric Condensation Signatures to Reconnection-driven Heating Rates in an Observed Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University