E-Print Archive

There are 4050 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm View all abstracts by submitter

Yumi Bamba   Submitted: 2019-02-13 19:09

The largest magnetic storm in solar cycle 24 was caused by a fast coronal mass ejection (CME) that was related to a small C9.1 flare that occurred on 15 March 2015 in solar active region (AR) NOAA 12297. The purpose of this study is to understand the onset mechanism of the geo-effective huge solar eruption. We focused on the C2.4 flare that occurred prior to the C9.1 flare of the filament eruption. The magnetic field structure in the AR was complicated: there were several filaments including the one that erupted and caused the CME. We hence carefully investigated the photospheric magnetic field, brightenings observed in the solar atmosphere, and the three-dimensional coronal magnetic field extrapolated from nonlinear force-free field modeling, using data from Hinode and Solar Dynamics Observatory. We found three intriguing points : (1) There was a compact but noticeably highly twisted magnetic field structure that is represented by a small filament in the C2.4 flaring region, where a tiny precursor brightening was observed before the C2.4 flare. (2) The C2.4 flaring region is located in the vicinity of a foot point of the closed field that prohibits the filament from erupting. (3) The filament shows a sudden eruption after the C2.4 flare and accompanying small filament eruption. From our analysis, we suggest that a small magnetic disturbance that was represented by the tiny precursor brightening at the time of the C2.4 flare is related to the trigger of the huge filament eruption.

Authors: Yumi Bamba, Satoshi Inoue, and Keiji Hayashi
Projects: Hinode/SOT,SDO-AIA,SDO-HMI

Publication Status: accepted by the Astrophysical Journal
Last Modified: 2019-02-14 13:18
Go to main E-Print page  Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare   A basal contribution from p-modes to the Alfv'enic wave flux in the corona  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University