E-Print Archive

There are 4122 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm View all abstracts by submitter

Yumi Bamba   Submitted: 2019-02-13 19:09

The largest magnetic storm in solar cycle 24 was caused by a fast coronal mass ejection (CME) that was related to a small C9.1 flare that occurred on 15 March 2015 in solar active region (AR) NOAA 12297. The purpose of this study is to understand the onset mechanism of the geo-effective huge solar eruption. We focused on the C2.4 flare that occurred prior to the C9.1 flare of the filament eruption. The magnetic field structure in the AR was complicated: there were several filaments including the one that erupted and caused the CME. We hence carefully investigated the photospheric magnetic field, brightenings observed in the solar atmosphere, and the three-dimensional coronal magnetic field extrapolated from nonlinear force-free field modeling, using data from Hinode and Solar Dynamics Observatory. We found three intriguing points : (1) There was a compact but noticeably highly twisted magnetic field structure that is represented by a small filament in the C2.4 flaring region, where a tiny precursor brightening was observed before the C2.4 flare. (2) The C2.4 flaring region is located in the vicinity of a foot point of the closed field that prohibits the filament from erupting. (3) The filament shows a sudden eruption after the C2.4 flare and accompanying small filament eruption. From our analysis, we suggest that a small magnetic disturbance that was represented by the tiny precursor brightening at the time of the C2.4 flare is related to the trigger of the huge filament eruption.

Authors: Yumi Bamba, Satoshi Inoue, and Keiji Hayashi
Projects: Hinode/SOT,SDO-AIA,SDO-HMI

Publication Status: accepted by the Astrophysical Journal
Last Modified: 2019-02-14 13:18
Go to main E-Print page  Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare   A basal contribution from p-modes to the Alfv'enic wave flux in the corona  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Test magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare
Real-time solar image classification: assessing spectral, pixel-based approaches
Modelling Mg II During Solar Flares. II. Non-equilibrium Effects
Calibration of the Instrumental Crosstalk for the Near-IR Imaging Spectropolarimeter at the NST
On the Source Position and Duration of a Solar Type III Radio Burst Observed by LOFAR
Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: Numerical parametric study of 1D loop model
The Eruption of Outer Spine-like Loops Leading to a Double-stage Circular-ribbon Flare
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling
The Solar Orbiter SPICE instrument - An extreme UV imaging spectrometer
Anisotropic Radio-Wave Scattering and the Interpretation of Solar Radio Emission Observations
Large-amplitude quasi-periodic pulsations as evidence of impulsive heating in hot transient loop systems detected in the EUV with SDO/AIA
Dynamic Evolution of Current Sheets, Ideal Tearing, Plasmoid Formation and Generalized Fractal Reconnection Scaling Relations
Characteristics of solar wind rotation
A Study of Pre-Flare Solar Coronal Magnetic Fields: Magnetic Flux Ropes
New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat
MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System
The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission
A Statistical Study of Solar Filament Eruptions That Forms High-Speed Coronal Mass Ejections
Reversed dynamo at small scales and large magnetic Prandtl number

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University