E-Print Archive

There are 4080 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations View all abstracts by submitter

Valery Nakariakov   Submitted: 2019-03-05 08:52

Rapidly decaying oscillations of the thermal emission detected in the decay phase of solar and stellar flares are usually interpreted as standing or sloshing (reflecting) slow magnetoacoustic oscillations. We determine the scalings of the oscillation periods, damping times and amplitudes with the temperature, considering both standing and sloshing oscillations detected with different instruments. In addition, the time evolution of different spatial harmonics of a sloshing oscillation is considered. Parameters of slow oscillations observed in the EUV, X-ray, and microwave bands, and published in the literature, are used. The damping time of slow oscillations is found to scale almost linearly with the oscillation period, as the period to 0.87± 0.1, giving the average Q-factor determined as the ratio of the damping time to the period, of about 1. The Q-factor is found to scale with the relative amplitude to the power of 0.33+0.10-0.11 with 95 % confidence. The amplitudes of different spatial harmonics forming a sloshing pulse show similar time evolution, suggesting that the period-dependent dissipation is counteracted by another mechanism. The results obtained indicate that the damping of slow oscillations depends on the oscillation amplitude, and that the competition of nonlinear and dissipative effects could allow for the existence of wave pulses of a sustained shape.

Authors: Nakariakov, V. M., Kosak, M. K., Kolotkov, D. Y., Anfinogentov, S. A., Kumar, P., Moon, Y.-J.
Projects: SDO-AIA

Publication Status: ApJL, accepted
Last Modified: 2019-03-05 12:47
Go to main E-Print page  The birth of a coronal mass ejection  Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetic Helicity from Multipolar Regions on the Solar Surface
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Exoplanet predictions based on harmonic orbit resonances
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling
Interplanetary Type IV Bursts
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
Detection of spike-like structures near the front of type-II burstsA
High resolution observations with Artemis-JLS, (II) Type IV associated intermediate drift bursts
Oscillation of a small Hα surge in a solar polar coronal hole
Radio Observations of the January 20, 2005 X-Class Event
Fine Structure of Metric Type-IV Radio Bursts Observed with the ARTEMIS-IV Radio Spectrograph: Association with Flares and Coronal Mass Ejections
Spectral Analysis of the September 2017 Solar Energetic Particle Events
Solar Energetic Particle Events Observed by the PAMELA Mission

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University