E-Print Archive

There are 4036 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields View all abstracts by submitter

Salvatore Mancuso   Submitted: 2019-03-19 03:02

On 2014 October 30, a band-splitted type II radio burst associated with a coronal mass ejection (CME) observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) occurred over the southeast limb of the Sun. The fast expansion in all directions of the plasma front acted as a piston and drove a spherical fast shock ahead of it, whose outward progression was traced by simultaneous images obtained with the Nançay Radioheliograph(NRH). The geometry of the CME/shock event was recovered through 3D modeling, given the absence of concomitant stereoscopic observations, and assuming that the band-splitted type II burst was emitted at the intersection of the shock surface with two adjacent low-Alfvén speed coronal streamers. From the derived spatiotemporal evolution of the standoff distance between shock and CME leading edge, we were finally able to infer the magnetic field strength B in the inner corona. A simple radial profile of the form B(r) = (12.6 ± 2.5)r-4 nicely fits our results, together with previous estimates, in the range r = 1.1-2.0 solar radii.

Authors: S. Mancuso, F. Frassati, A. Bemporad, D. Barghini
Projects: MLSO Mk4 K-Coronameter,Nançay Radioheliograph,SDO-AIA

Publication Status: A&A Letter, in press
Last Modified: 2019-03-19 10:44
Go to main E-Print page  Fast Magnetoacoustic Wave Trains with Time-dependent Drivers  The soft X-ray spectrometer polarimeter SolpeX  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University