E-Print Archive

There are 4050 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona View all abstracts by submitter

Pakorn Wongwaitayakornkul   Submitted: 2019-04-01 12:49

Single-pulse, globally propagating coronal fronts, called Extreme-ultraviolet (EUV) waves, were first observed in 1995 by the Extreme-ultraviolet Imaging Telescope and every observed EUV wave since has been associated with a coronal mass ejection (CME). The physical mechanism underlying these waves has been debated for two decades with wave or pseudo-wave theories being advocated. We propose a hybrid model where EUV waves are compressional fronts driven by a reverse electric current layer induced by the time-dependent CME core current. The reverse current layer flows in a direction opposite to the CME core current and is an eddy current layer necessary to maintain magnetic flux conservation above the layer. Repelled by the core current, the reverse current layer accelerates upward so it acts as a piston that drives a compressional perturbation in the coronal regions above. Given a sufficiently fast piston speed, the compressional perturbation becomes a shock that separates from the piston when the piston slows down. Since the model relates the motion of the EUV front to CME properties, the model provides a bound for the core current of an erupting CME. The model is supported and motivated by detailed results from both laboratory experiments and ideal 3D magnetohydrodynamic simulations. Overlaps and differences with other models and spacecraft observations are discussed.

Authors: Pakorn Wongwaitayakornkul, Magnus A. Haw, Hui Li, and Paul M. Bellan
Projects: None

Publication Status: Published in ApJ, 874, 137 (2019)
Last Modified: 2019-04-01 15:06
Go to main E-Print page  Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -  Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University