E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data - View all abstracts by submitter

Yuta Notsu   Submitted: 2019-04-02 17:43

We report the latest view of Kepler solar-type (G-type main-sequence) superflare stars, including recent updates with Apache Point Observatory (APO) 3.5m telescope spectroscopic observations and Gaia-DR2 data. First, we newly conducted APO3.5m spectroscopic observations of 18 superflare stars found from Kepler 1-min time cadence data. More than half (43 stars) are confirmed to be "single" stars, among 64 superflare stars in total that have been spectroscopically investigated so far in this APO3.5m and our previous Subaru/HDS observations. The measurements of v sin i (projected rotational velocity) and chromospheric lines (Ca II H&K and Ca II 8542Å) support the brightness variation of superflare stars is caused by the rotation of a star with large starspots. We then investigated the statistical properties of Kepler solar-type superflare stars by incorporating Gaia-DR2 stellar radius estimates. As a result, the maximum superflare energy continuously decreases as the rotation period Prot increases. Superflares with energies ≲5x1034 erg occur on old, slowly-rotating Sun-like stars (Prot∼25 days) approximately once every 2000-3000 years, while young rapidly-rotating stars with Prot∼ a few days have superflares up to 1036 erg. The maximum starspot area does not depend on the rotation period when the star is young, but as the rotation slows down, it starts to steeply decrease at Prot≳12 days for Sun-like stars. These two decreasing trends are consistent since the magnetic energy stored around starspots explains the flare energy, but other factors like spot magnetic structure should also be considered.

Authors: Yuta Notsu, Hiroyuki Maehara, Satoshi Honda, Suzanne L. Hawley, James R. A. Davenport, Kosuke Namekata, Shota Notsu, Kai Ikuta, Daisaku Nogami, Kazunari Shibata
Projects: None

Publication Status: ApJ in press
Last Modified: 2019-04-03 12:29
Go to main E-Print page  Invited Review:  Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution  Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University