E-Print Archive

There are 4524 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Difference of source regions between fast and slow coronal mass ejections View all abstracts by submitter

Boris Filippov   Submitted: 2019-04-09 03:44

Coronal mass ejections (CMEs) are tightly related to filament eruptions and usually are their continuation in the upper solar corona. It is common practice to divide all observed CMEs into fast and slow ones. Fast CMEs usually follow eruptive events in active regions near big sunspot groups and associated with major solar flares. Slow CMEs are more related to eruptions of quiescent prominences located far from active regions. We analyze ten eruptive events with particular attention to the events on 2013 September 29 and on 2016 January 26, one of which was associated with a fast CME, while another was followed by a slow CME. We estimated the initial store of free magnetic energy in the two regions and show the resemblance of pre-eruptive situations. The difference of late behaviour of the two eruptive prominences is a consequence of the different structure of magnetic field above the filaments. We estimated this structure on the basis of potential magnetic field calculations. Analysis of other eight events confirmed that all fast CMEs originate in regions with rapidly changing with height value and direction of coronal magnetic field.

Authors: B. Filippov
Projects: SDO-AIA,SDO-HMI,SoHO-LASCO

Publication Status: Accepted for publication in PASA
Last Modified: 2019-04-10 02:08
Go to main E-Print page  Coronal Bright Points  Invited Review:  Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University