E-Print Archive

There are 4050 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Coronal Bright Points View all abstracts by submitter

Maria Madjarska   Submitted: 2019-04-12 07:01

Coronal bright points (CBPs) are a fundamental class of solar activity. They represent a set of low-corona small-scale loops with enhanced emission in the extreme-ultraviolet and X-ray spectrum that connect magnetic flux concentrations of opposite polarities. CBPs are one of the main building blocks of the solar atmosphere outside active regions uniformly populating the solar atmosphere including active region latitudes and coronal holes. Their plasma properties classify them as downscaled active regions. Most importantly, their simple structure and short lifetimes of less than 20 h that allow to follow their full lifetime evolution present a unique opportunity to investigate outstanding questions in solar physics including coronal heating. The present Living Review is the first review of this essential class of solar phenomena and aims to give an overview of the current knowledge about the CBP general, plasma and magnetic properties. Several transient dynamic phenomena associated with CBPs are also briefly introduced. The observationally derived energetics and the theoretical modelling that aims at explaining the CBP formation and eruptive behaviour are reviewed.

Authors: Maria S. Madjarska
Projects: None

Publication Status: published in Living Reviews in Solar Physics
Last Modified: 2019-04-14 16:12
Go to main E-Print page  Data-Optimized Coronal Field Model: I. Proof of Concept  Difference of source regions between fast and slow coronal mass ejections  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University