E-Print Archive

There are 4089 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere? View all abstracts by submitter

KJ LI   Submitted: 2019-04-16 19:26

Coronal heating is a big question for modern astronomy. Daily measurement of 985 solar spectral irradiances (SSIs) at the spectral intervals 1-39 nm and 116-2416 nm during March 1 2003 to October 28 2017 is utilized to investigate characteristics of solar rotation in the solar atmosphere by means of the Lomb  -  Scargle periodogram method to calculate their power spectra. The rotation period of coronal plasma is obtained to be 26.3 days, and that of the solar atmosphere at the bottom of the photosphere modulated by magnetic structures is 27.5 days. Here we report for the first time that unexpectedly the coronal atmosphere is found to rotate faster than the underlying photosphere. When time series of SSIs are divided into different cycles, and the ascending and descending periods of a solar cycle, rotation rate in the corona is also found to be larger than that in the photosphere, and this actually gives hidden evidence: it is small-scale magnetic activity that heats the corona.

Authors: KJ Li, JC Xu, ZQ Yin, W Feng
Projects: None

Publication Status: accepted for publication in ApJ
Last Modified: 2019-04-17 19:18
Go to main E-Print page  Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface  Impacts On Proton Fluxes Observed During Different Interplanetary Conditions  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University