E-Print Archive

There are 4122 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface View all abstracts by submitter

Krzysztof Barczynski   Submitted: 2019-04-23 09:57

During eruptive flares, vector magnetograms show increasing horizontal magnetic field and downward Lorentz force in the Sun's photosphere around the polarity-inversion line. Such behavior has often been associated with the implosion conjecture and interpreted as the result of either momentum conservation while the eruption moves upward, or of the contraction of flare loops. We characterize the physical origin of these observed behaviors by analyzing a generic 3D MHD simulation of an eruptive flare. Even though the simulation was undesigned to recover the magnetic field and Lorentz force properties, it is fully consistent with them, and it provides key additional informations to understand them. The area where the magnetic field increases gradually develops between current ribbons, which spread away from each other and are connected to the coronal region. This area is merely the footprint of the coronal post- flare loops, whose contraction increases their shear field component and the magnetic energy density in line with the ideal induction equation. For simulated data, we computed the Lorentz force density map by applying the method used in observations. We obtained increase of the downward component of the Lorentz force density around the PIL ?consistent with observations. However, this significantly differs from the Lorentz force density maps obtained directly from the 3D magnetic field and current. These results altogether question previous interpretations based on the implosion conjecture and momentum conservation with the CME, and rather imply that the observed increases in photospheric horizontal magnetic fields result from the reconnection-driven contraction of sheared flare-loops.

Authors: Krzysztof Barczynski, Guillaume Aulanier, Sophie Masson, Michael S. Wheatland
Projects: None

Publication Status: accepted for publication in ApJ (April 19, 2019)
Last Modified: 2019-04-24 14:28
Go to main E-Print page  Oscillations Accompanying a He I 10830 ? Negative Fare in a Solar Facula II. Response of the Transition Region and Corona  Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Test magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare
Real-time solar image classification: assessing spectral, pixel-based approaches
Modelling Mg II During Solar Flares. II. Non-equilibrium Effects
Calibration of the Instrumental Crosstalk for the Near-IR Imaging Spectropolarimeter at the NST
On the Source Position and Duration of a Solar Type III Radio Burst Observed by LOFAR
Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: Numerical parametric study of 1D loop model
The Eruption of Outer Spine-like Loops Leading to a Double-stage Circular-ribbon Flare
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling
The Solar Orbiter SPICE instrument - An extreme UV imaging spectrometer
Anisotropic Radio-Wave Scattering and the Interpretation of Solar Radio Emission Observations
Large-amplitude quasi-periodic pulsations as evidence of impulsive heating in hot transient loop systems detected in the EUV with SDO/AIA
Dynamic Evolution of Current Sheets, Ideal Tearing, Plasmoid Formation and Generalized Fractal Reconnection Scaling Relations
Characteristics of solar wind rotation
A Study of Pre-Flare Solar Coronal Magnetic Fields: Magnetic Flux Ropes
New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat
MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System
The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission
A Statistical Study of Solar Filament Eruptions That Forms High-Speed Coronal Mass Ejections
Reversed dynamo at small scales and large magnetic Prandtl number

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University