E-Print Archive

There are 4512 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends View all abstracts by submitter

Yoichi Takeda   Submitted: 2019-05-07 18:54

The equivalent widths (W) of 565 spectral lines in the wavelength range of 4690-6870A were evaluated at 31 consecutive points from the solar disk center (mu=cos(theta)=1) to near the limb (mu=0.25) by applying the synthetic spectrum-fitting technique, in order to clarify the nature of their center-limb variations, especially the observed slope differing from line to line and its interpretation in terms of line properties. We found that the distribution of the gradient beta (= -dlog W/dlog mu) well correlates with that of dlog W/dlog T index, which means that the center-to-limb variation of W is determined mainly by the T-sensitivity of individual lines because the line-forming region shifts towards upper layers of lower T as we go toward the limb. Further, the key to understanding the behavior of dlog W/dlog T (depending on the temperature sensitivity of number population) is whether the considered species is in minor population stage or major population stage, by which the distribution of beta is explained in terms of differences in excitation potential and line strengths. All the center-limb data of equivalent widths (as well as line-of-sight turbulent velocity dispersions, elemental abundances, and mean line-formation depths derived as by-products) along with the solar spectra used for our analysis are made available as on-line materials.

Authors: Y. Takeda and S. UeNo
Projects: Domeless Solar Telescope (Hida Observatory)

Publication Status: accepted for publication in Solar Physics
Last Modified: 2019-05-08 09:52
Go to main E-Print page  Coronal loop transverse oscillations excited by different driver frequencies  The plasmoid instability in a confined solar flare  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops
Sun-as-a-star Analysis of Hα Spectra of a Solar Flare Observed by SMART/SDDI: Time Evolution of Red Asymmetry and Line Broadening
Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes
Analysis of the Evolution of a Multi-Ribbon Flare and Failed Filament Eruption
Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares
Annihilation of Magnetic Islands at the Top of Solar Flare Loops
Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares
Grow-up of a Filament Channel by Intermittent Small-scale Magnetic Reconnection
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University