E-Print Archive

There are 4525 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
How Many Twists Do Solar Coronal Jets Release? View all abstracts by submitter

Jiajia Liu   Submitted: 2019-05-24 07:46

Highly twisted magnetic flux ropes, with finite length, are subject to kink instabilities, and could lead to a number of eruptive phenomena in the solar atmosphere, including flares, coronal mass ejections (CMEs) and coronal jets. The kink instability threshold, which is the maximum twist a kink-stable magnetic flux rope could contain, has been widely studied in analytical models and numerical simulations, but still needs to be examined by observations. In this article, we will study twists released by 30 off-limb rotational solar coronal jets, and compare the observational findings with theoretical kink instability thresholds. We have found that: 1) the number of events with more twist release becomes less; 2) each of the studied jets has released a twist number of at least 1.3 turns (a twist angle of 2.6π); and 3) the size of a jet is highly related to its twist pitch instead of twist number. Our results suggest that the kink instability threshold in the solar atmosphere should not be a constant. The found lower limit of twist number of 1.3 turns should be merely a necessary but not a sufficient condition for a finite solar magnetic flux rope to become kink unstable.

Authors: Jiajia Liu, Yuming Wang, Robertus Erdélyi
Projects: SDO-AIA

Publication Status: Accepted for publication in Frontiers in Astronomy and Space Sciences
Last Modified: 2019-05-24 10:19
Go to main E-Print page  Linear waves in a non-equilibrium ionisation partially ionised plasma  Predicting Solar Flares Using a Long Short-Term Memory Network  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Geomagnetic storm forecasting from solar coronal holes
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University