E-Print Archive

There are 4115 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars? View all abstracts by submitter

Alexander Kosovichev   Submitted: 2019-08-14 12:43

Two fundamental properties of stellar magnetic fields have been determined by observations for solar-like stars with different Rossby numbers (Ro), namely, the magnetic field strength and the magnetic cycle period. The field strength exhibits two regimes: (1) for fast rotation, it is independent of Ro, and (2) for slow rotation, it decays with Ro following a power law. For the magnetic cycle period, two regimes of activity, the active and inactive branches, have also been identified. For both of them, the longer the rotation period, the longer the activity cycle. Using global dynamo simulations of solar-like stars with Rossby numbers between ∼0.4 and ∼2, this paper explores the relevance of rotational shear layers in determining these observational properties. Our results, consistent with nonlinear α^2Ω dynamos, show that the total magnetic field strength is independent of the rotation period. Yet at surface levels, the origin of the magnetic field is determined by Ro. While for Ro≲1, it is generated in the convection zone, for Ro≳ 1, strong toroidal fields are generated at the tachocline and rapidly emerge toward the surface. In agreement with the observations, the magnetic cycle period increases with the rotational period. However, a bifurcation is observed for Ro∼1, separating a regime where oscillatory dynamos operate mainly in the convection zone from the regime where the tachocline has a predominant role. In the latter, the cycles are believed to result from the periodic energy exchange between the dynamo and the magneto-shear instabilities developing in the tachocline and the radiative interior.

Authors: Guerrero, G.; Zaire, B.; Smolarkiewicz, P. K.; de Gouveia Dal Pino, E. M.; Kosovichev, A. G.; Mansour, N. N.
Projects: SDO-HMI

Publication Status: Astrophysical Journal, Volume 880, Issue 1, article id. 6, 20 pp. (2019).
Last Modified: 2019-08-15 16:45
Go to main E-Print page  On the Origin of Solar Torsional Oscillations and Extended Solar Cycle  Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling
The Solar Orbiter SPICE instrument - An extreme UV imaging spectrometer
Anisotropic Radio-Wave Scattering and the Interpretation of Solar Radio Emission Observations
Large-amplitude quasi-periodic pulsations as evidence of impulsive heating in hot transient loop systems detected in the EUV with SDO/AIA
Dynamic Evolution of Current Sheets, Ideal Tearing, Plasmoid Formation and Generalized Fractal Reconnection Scaling Relations
Characteristics of solar wind rotation
A Study of Pre-Flare Solar Coronal Magnetic Fields: Magnetic Flux Ropes
New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat
MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System
The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission
A Statistical Study of Solar Filament Eruptions That Forms High-Speed Coronal Mass Ejections
Reversed dynamo at small scales and large magnetic Prandtl number
Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature
Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University