E-Print Archive

There are 4236 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature View all abstracts by submitter

Bieke Decraemer   Submitted: 2019-08-20 08:30

Helmet streamers are a prominent manifestation of magnetic structures with current sheets in the solar corona. These large-scale structures are regions with high plasma density, overlying active regions and lament channels. We investigate the three-dimensional (3D) structure of a coronal streamer, observed simultaneously by white-light coronagraphs from two vantage points near quadrature (SOHO/LASCO and STEREO/COR2). We design a forward model based on plausible assumptions about the 3D streamer structure taken from physical models (a plasma slab centered around a current sheet). The streamer stalk is approximated by a plasma slab, with electron density that is characterized by three separate functions describing the radial, transverse and face-on pro les respectively. For the rst time, we simultaneously t the observational data from SOHO and STEREO using a multivariate minimization algorithm. The streamer plasma sheet contains a number of brighter and darker ray-like structures with the density contrast up to about a factor 3 between them. The densities derived using polarized and unpolarized data are similar. We demonstrate that our model corresponds well to the observations.

Authors: Bieke Decraemer, Andrei N. Zhukov, and Tom Van Doorsselaere

Publication Status: Accepted for publication in The Astrophysical Journal
Last Modified: 2019-08-21 14:20
Go to main E-Print page  Reversed dynamo at small scales and large magnetic Prandtl number  Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University