E-Print Archive

There are 4133 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Statistical Study of Solar Filament Eruptions That Forms High-Speed Coronal Mass Ejections View all abstracts by submitter

Chaowei Jiang   Submitted: 2019-08-26 03:05

Coronal mass ejections (CMEs) play a decisive role in driving space weather, especially, the fast ones (e.g., with speeds above 800 km s-1). Understanding the trigger mechanisms of fast CMEs can help us gaining important information in forecasting them. The filament eruptions accompanied with CMEs provide a good tracer in studying the early evolution of CMEs. Here we surveyed 66 filament-accompanied fast CMEs to analyse the correlation between the trigger mechanisms, namely either magnetic reconnection or ideal MHD process, associated flares, and CME speeds. Based on the data gathering from SDO, GONG and STEREO, we find that: (1) Active region (AR) filament and intermediate filaments (IFs) eruptions show a higher probability for producing fast CMEs than quiet Sun (QS) filaments, while the probability of polar crown (PC) filament eruptions is zero in our statistic; (2) AR filament eruptions that produce fast CMEs are more likely triggered by magnetic reconnection, while QS and IFs are more likely triggered by ideal MHD process; (3) For AR filaments and IFs, it seems that the specific trigger mechanism does not have a significant influence on the resulted CME speeds, while for the QS filaments, the ideal MHD mechanism can more likely generate a faster CME; (4) Comparing with previous statistic study, the onset heights of filament eruptions and the decay indexes of the overlying field show some differences: for AR filaments and IFs, the decay indexes are larger and much closer to the theoretical threshold, while for QS filaments, the onset heights are higher than those obtained in previous results.

Authors: Peng Zou, Chaowei Jiang, Fengsi Wei, Pingbing Zuo, Yi Wang
Projects: None

Publication Status: Accept by ApJ
Last Modified: 2019-08-26 10:45
Go to main E-Print page  The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission  Reversed dynamo at small scales and large magnetic Prandtl number  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Lorentz Force Evolution Reveals the Energy Build-up Processes during Recurrent Eruptive Solar Flares
Measurement of the Height of the Chromospheric Network Emission from Solar Dynamics Observatory Images
Submillimeter radiation as the thermal component of the Neupert Effect
A Very Narrow RHESSI X-ray Flare on 25 September 2011
First Detection of Plasmoids from Breakout Reconnection on the Sun
A New Type of Jets in a Polar Limb of Solar Coronal Hole
First imaging spectroscopy observations of solar drift pair bursts
Round-Trip Slipping Magnetic Reconnection Observed in a Fan-Spine Jet
A global two-scale helicity proxy from pi-ambiguous solar magnetic fields
Multi-layered Kelvin-Helmholtz Instability in the Solar Corona
Magnetohydrodynamic Seismology of Quiet Solar Active Regions
Testing magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare
Real-time solar image classification: assessing spectral, pixel-based approaches
Modelling Mg II During Solar Flares. II. Non-equilibrium Effects
Calibration of the Instrumental Crosstalk for the Near-IR Imaging Spectropolarimeter at the NST
On the Source Position and Duration of a Solar Type III Radio Burst Observed by LOFAR
Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: Numerical parametric study of 1D loop model
The Eruption of Outer Spine-like Loops Leading to a Double-stage Circular-ribbon Flare
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University