E-Print Archive

There are 4451 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A Statistical Study of Solar Filament Eruptions That Forms High-Speed Coronal Mass Ejections View all abstracts by submitter

Chaowei Jiang   Submitted: 2019-08-26 03:05

Coronal mass ejections (CMEs) play a decisive role in driving space weather, especially, the fast ones (e.g., with speeds above 800 km s-1). Understanding the trigger mechanisms of fast CMEs can help us gaining important information in forecasting them. The filament eruptions accompanied with CMEs provide a good tracer in studying the early evolution of CMEs. Here we surveyed 66 filament-accompanied fast CMEs to analyse the correlation between the trigger mechanisms, namely either magnetic reconnection or ideal MHD process, associated flares, and CME speeds. Based on the data gathering from SDO, GONG and STEREO, we find that: (1) Active region (AR) filament and intermediate filaments (IFs) eruptions show a higher probability for producing fast CMEs than quiet Sun (QS) filaments, while the probability of polar crown (PC) filament eruptions is zero in our statistic; (2) AR filament eruptions that produce fast CMEs are more likely triggered by magnetic reconnection, while QS and IFs are more likely triggered by ideal MHD process; (3) For AR filaments and IFs, it seems that the specific trigger mechanism does not have a significant influence on the resulted CME speeds, while for the QS filaments, the ideal MHD mechanism can more likely generate a faster CME; (4) Comparing with previous statistic study, the onset heights of filament eruptions and the decay indexes of the overlying field show some differences: for AR filaments and IFs, the decay indexes are larger and much closer to the theoretical threshold, while for QS filaments, the onset heights are higher than those obtained in previous results.

Authors: Peng Zou, Chaowei Jiang, Fengsi Wei, Pingbing Zuo, Yi Wang
Projects: None

Publication Status: Accept by ApJ
Last Modified: 2019-08-26 10:45
Go to main E-Print page  The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission  Reversed dynamo at small scales and large magnetic Prandtl number  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Structural evolution of a magnetic flux rope associated with a major flare in the solar active region 12205
Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of Current Sheet within a Sheared Magnetic Arcade
Propagating Oscillations in the Lower Atmosphere Under Coronal Holes
Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere
Plasma dynamics in the flaring loop observed by RHESSI
Multi-instrument STIX microflare study
Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper II: Nonlinear Simulations
Multi-Passband Observations of A Solar Flare over the He I 10830 line
Multi-wavelength quasi-periodic pulsations in a stellar superflare
Probable detection of an eruptive filament from a superflare on a solar-type star
Global Energetics in Solar Flares. XIII. The Neupert Effect and Acceleration of Coronal Mass Ejections
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper I: Linear Solutions
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope
Direct evidence that twisted flux tube emergence creates solar active regions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University