E-Print Archive

There are 4438 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission View all abstracts by submitter

Amir Caspi   Submitted: 2019-08-26 12:53

Solar flare X-ray spectra are typically dominated by thermal bremsstrahlung emission in the soft X-ray (<~10 keV) energy range; for hard X-ray energies (≳30 keV), emission is typically nonthermal from beams of electrons. The low-energy extent of nonthermal emission has only been loosely quantified. It has been difficult to obtain a lower limit for a possible nonthermal cutoff energy due to the significantly dominant thermal emission. Here we use solar flare data from the extreme ultraviolet Variability Experiment on board the Solar Dynamics Observatory and X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager to calculate the Differential Emission Measure (DEM). This improvement over the isothermal approximation and any single-instrument DEM helps to resolve ambiguities in the range where thermal and nonthermal emission overlap, and to provide constraints on the low-energy cutoff. In the model, thermal emission is from a DEM that is parameterized as multiple Gaussians in Log(T). Nonthermal emission results from a photon spectrum obtained using a thick-target emission model. Spectra for both instruments are fit simultaneously in a self-consistent manner. Our results have been obtained using a sample of 52 large (Geostationary Operational Environmental Satellite X- and M-class) solar flares observed between 2011 and 2013. It turns out that it is often possible to determine low-energy cutoffs early (in the first two minutes) during large flares. Cutoff energies at these times are typically low, less than 10 keV, when assuming coronal abundances. With photospheric abundances, cutoff energies are typically ∼10 keV higher, in the ∼17-25 keV range.

Authors: James M. McTiernan, Amir Caspi, Harry P. Warren
Projects: GOES X-rays,RHESSI,SDO-EVE

Publication Status: Published -- McTiernan, J. M., Caspi, A., & Warren, H. P. 2019, ApJ, 881, 161; DOI 10.3847/1538-4357/ab2fcc
Last Modified: 2019-08-27 10:10
Go to main E-Print page  MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System  A Statistical Study of Solar Filament Eruptions That Forms High-Speed Coronal Mass Ejections  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope
Direct evidence that twisted flux tube emergence creates solar active regions
Numerical Simulation of a Fundamental Mechanism of Solar Eruption with Different Magnetic Flux Distributions
Toward Improved Understanding of Magnetic Fields Participating in Solar Flares: Statistical Analysis of Magnetic Field within Flare Ribbons
Torus-Stable Zone Above Starspots
Constraining the CME Core Heating and Energy Budget with SOHO/UVCS
The solar corona as an active medium for magnetoacoustic waves
Rapid Evolution of Bald Patches in a Major Solar Eruption
Evaluating Pointing Strategies for Future Solar Flare Missions
Common origin of quasi-periodic pulsations in microwave and decimetric solar radio bursts
Thomson scattering in the lower corona in the presence of sunspots
The Spatial and Temporal Variations of Turbulence in a Solar Flare
Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Millennial oscillations of solar irradiance and magnetic field at Earth in 600-2600
Plasma turbulence generated in 3D current sheet with magnetic islands

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University