E-Print Archive

There are 4594 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System View all abstracts by submitter

Amir Caspi   Submitted: 2019-08-26 13:02

The Miniature X-ray Solar Spectrometer (MinXSS) is a three-unit (3U) CubeSat designed for a three-month mission to study solar soft X-ray spectral irradiance. The first of the two flight models was deployed from the International Space Station in May 2016, and operated for one year before its natural deorbiting. This was the first flight of the Blue Canyon Technologies XACT 3-axis attitude determination and control system - a commercially available, high-precision pointingsystem. The performance of the pointing system on orbit was characterized, including performance at low altitudes where drag torque builds up. It was found that the pointing accuracy was 0.0042° - 0.0117° (15" - 42", 3 σ, axis dependent) consistently from 190 km - 410 km, slightly better than the specification sheet states. Peak-to-peak jitter was estimated to be 0.0073° (10 s-1) - 0.0183° (10 s-1) (26" (10 s-1) - 66" (10 s-1), 3 σ). The system was capable of dumping momentum until an altitude of 185 km. Small amounts of sensor degradation were found in the star tracker and coarse sun sensor. The mission profile did not require high-agility maneuvers, so it was not possible to characterize this metric. Without a GPS receiver, it was necessary to periodically upload ephemeris information to update the orbit propagation model and maintain pointing. At 400 km, these uploads were required once every other week; at ∼270 km, they were required every day. The power performance of the electric power system was also characterized, including use of a novel pseudo-peak power tracker - a resistor that limited the current draw from the battery on the solar panels. With 19 30% efficient solar cells and an 8 W system load, the power balance had 65% of margin on orbit. The current paper presents several recommendations to other CubeSat programs throughout.

Authors: James P. Mason, Matt Baumgart, Bryan Rogler, Chloe Downs, Margaret Williams, Thomas N. Woods, Scott Palo, Phillip C. Chamberlin, Stanley Solomon, Andrew Jones, Xinlin Li, Rick Kohnert, Amir Caspi
Projects: MinXSS

Publication Status: Published -- Mason et al. 2017, J. Small Satellites, 6(3), 651
Last Modified: 2019-08-27 10:10
Go to main E-Print page  New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat  The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME
Separating the effects of earthside and far side solar events. A case study.
Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection
Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet
Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares
A Model for Confined Solar Eruptions Including External Reconnection
The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe
Comprehensive radiative MHD simulations of eruptive flares above collisional polarity inversion lines
An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations
Comparison of damping models for kink oscillations of coronal loops
On the three-dimensional relation between the coronal dimming, erupting filament and CME. Case study of the 28 October 2021 X1.0 event
Polarisation of decayless kink oscillations of solar coronal loops
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development
30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops
The Role of High-Frequency Transverse Oscillations in Coronal Heating
ARTop: an open-source tool for measuring Active Region Topology at the solar photosphere
Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE
New cases of super-flares on slowly rotating solar-type stars and large amplitude super-flares in G- and M-type main-sequence stars
Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe
Prediction of short stellar activity cycles using derived and established empirical relations between activity and rotation periods

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University