E-Print Archive

There are 4133 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System View all abstracts by submitter

Amir Caspi   Submitted: 2019-08-26 13:02

The Miniature X-ray Solar Spectrometer (MinXSS) is a three-unit (3U) CubeSat designed for a three-month mission to study solar soft X-ray spectral irradiance. The first of the two flight models was deployed from the International Space Station in May 2016, and operated for one year before its natural deorbiting. This was the first flight of the Blue Canyon Technologies XACT 3-axis attitude determination and control system - a commercially available, high-precision pointingsystem. The performance of the pointing system on orbit was characterized, including performance at low altitudes where drag torque builds up. It was found that the pointing accuracy was 0.0042° - 0.0117° (15" - 42", 3 σ, axis dependent) consistently from 190 km - 410 km, slightly better than the specification sheet states. Peak-to-peak jitter was estimated to be 0.0073° (10 s-1) - 0.0183° (10 s-1) (26" (10 s-1) - 66" (10 s-1), 3 σ). The system was capable of dumping momentum until an altitude of 185 km. Small amounts of sensor degradation were found in the star tracker and coarse sun sensor. The mission profile did not require high-agility maneuvers, so it was not possible to characterize this metric. Without a GPS receiver, it was necessary to periodically upload ephemeris information to update the orbit propagation model and maintain pointing. At 400 km, these uploads were required once every other week; at ∼270 km, they were required every day. The power performance of the electric power system was also characterized, including use of a novel pseudo-peak power tracker - a resistor that limited the current draw from the battery on the solar panels. With 19 30% efficient solar cells and an 8 W system load, the power balance had 65% of margin on orbit. The current paper presents several recommendations to other CubeSat programs throughout.

Authors: James P. Mason, Matt Baumgart, Bryan Rogler, Chloe Downs, Margaret Williams, Thomas N. Woods, Scott Palo, Phillip C. Chamberlin, Stanley Solomon, Andrew Jones, Xinlin Li, Rick Kohnert, Amir Caspi
Projects: MinXSS

Publication Status: Published -- Mason et al. 2017, J. Small Satellites, 6(3), 651
Last Modified: 2019-08-27 10:10
Go to main E-Print page  New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat  The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Lorentz Force Evolution Reveals the Energy Build-up Processes during Recurrent Eruptive Solar Flares
Measurement of the Height of the Chromospheric Network Emission from Solar Dynamics Observatory Images
Submillimeter radiation as the thermal component of the Neupert Effect
A Very Narrow RHESSI X-ray Flare on 25 September 2011
First Detection of Plasmoids from Breakout Reconnection on the Sun
A New Type of Jets in a Polar Limb of Solar Coronal Hole
First imaging spectroscopy observations of solar drift pair bursts
Round-Trip Slipping Magnetic Reconnection Observed in a Fan-Spine Jet
A global two-scale helicity proxy from pi-ambiguous solar magnetic fields
Multi-layered Kelvin-Helmholtz Instability in the Solar Corona
Magnetohydrodynamic Seismology of Quiet Solar Active Regions
Testing magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare
Real-time solar image classification: assessing spectral, pixel-based approaches
Modelling Mg II During Solar Flares. II. Non-equilibrium Effects
Calibration of the Instrumental Crosstalk for the Near-IR Imaging Spectropolarimeter at the NST
On the Source Position and Duration of a Solar Type III Radio Burst Observed by LOFAR
Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: Numerical parametric study of 1D loop model
The Eruption of Outer Spine-like Loops Leading to a Double-stage Circular-ribbon Flare
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University