E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Miniature X-ray Solar Spectrometer (MinXSS) - A Science-Oriented, University 3U CubeSat View all abstracts by submitter

Amir Caspi   Submitted: 2016-08-17 14:55

The Miniature X-ray Solar Spectrometer (MinXSS) is a 3-Unit (3U) CubeSat developed at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder (CU). Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at CU and from LASP scientists and engineers. The scientific objective of MinXSS is to study processes in the dynamic Sun, from quiet-Sun to solar flares, and to further understand how these changes in the Sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays (SXRs). The enabling technology providing the advanced solar SXR spectral measurements is the Amptek X123, a commercial-off-the-shelf (COTS) silicon drift detector (SDD). The Amptek X123 has a low mass (~324 g after modification), modest power consumption (~2.50 W), and small volume (6.86 cm x 9.91 cm x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the MinXSS mission: the science objectives, project history, subsystems, and lessons learned that can be useful for the small-satellite community.

Authors: James Paul Mason, Thomas N. Woods, Amir Caspi, Phillip Chamberlin, Christopher Moore, Andrew Jones, Rick Kohnert, Xinlin Li, Scott Palo, & Stanley Solomon
Projects: MinXSS

Publication Status: Published -- Mason et al. 2016, J. Spacecraft Rockets, 53, 328; DOI: 10.2514/1.A33351
Last Modified: 2019-08-27 10:10
Go to main E-Print page  Narrow-line-width UV bursts in the transition region above Sunspots observed by IRIS  Evolution of Magnetic Helicity During Eruptive Flares and Coronal Mass Ejections  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University