E-Print Archive

There are 4559 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Miniature X-ray Solar Spectrometer (MinXSS) - A Science-Oriented, University 3U CubeSat View all abstracts by submitter

Amir Caspi   Submitted: 2016-08-17 14:55

The Miniature X-ray Solar Spectrometer (MinXSS) is a 3-Unit (3U) CubeSat developed at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder (CU). Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at CU and from LASP scientists and engineers. The scientific objective of MinXSS is to study processes in the dynamic Sun, from quiet-Sun to solar flares, and to further understand how these changes in the Sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays (SXRs). The enabling technology providing the advanced solar SXR spectral measurements is the Amptek X123, a commercial-off-the-shelf (COTS) silicon drift detector (SDD). The Amptek X123 has a low mass (~324 g after modification), modest power consumption (~2.50 W), and small volume (6.86 cm x 9.91 cm x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the MinXSS mission: the science objectives, project history, subsystems, and lessons learned that can be useful for the small-satellite community.

Authors: James Paul Mason, Thomas N. Woods, Amir Caspi, Phillip Chamberlin, Christopher Moore, Andrew Jones, Rick Kohnert, Xinlin Li, Scott Palo, & Stanley Solomon
Projects: MinXSS

Publication Status: Published -- Mason et al. 2016, J. Spacecraft Rockets, 53, 328; DOI: 10.2514/1.A33351
Last Modified: 2019-08-27 10:10
Go to main E-Print page  Narrow-line-width UV bursts in the transition region above Sunspots observed by IRIS  Evolution of Magnetic Helicity During Eruptive Flares and Coronal Mass Ejections  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Comparison of solar activity proxies: eigenvectors versus averaged sunspot numbers
A comparative study of resistivity models for simulations of magnetic reconnection in the solar atmosphere
Links of Terrestrial Volcanic Eruptions to Solar Activity and Solar Magnetic Field
Periodicities in Solar Activity, Solar Radiation and Their Links with Terrestrial Environment
Transverse vertical oscillations during the contraction and expansion of coronal loops
New Evidence on the Origin of Solar Wind Microstreams/Switchbacks
The Merging of a Coronal Dimming and the Southern Polar Coronal Hole
Complete replacement of magnetic flux in a flux rope during a coronal mass ejection
The SunPy Project: An Interoperable Ecosystem for Solar Data Analysis
Evidence of external reconnection between an erupting mini-filament and ambient loops observed by Solar Orbiter/EUI
Ultra-high-resolution Observations of Persistent Null-point Reconnection in the Solar Corona
The Evolution of Plasma Composition During a Solar Flare
The efficiency of electron acceleration during the impulsive phase of a solar flare
Evolution of Solar Eruptive Events: Investigating the Relationships Among Magnetic Reconnection, Flare Energy Release, and Coronal Mass Ejections
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University