E-Print Archive

There are 4133 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Anisotropic Radio-Wave Scattering and the Interpretation of Solar Radio Emission Observations View all abstracts by submitter

Eduard Kontar   Submitted: 2019-09-11 00:02

The observed properties (i.e., source size, source position, time duration, decay time) of solar radio emission produced through plasma processes near the local plasma frequency, and hence the interpretation of solar radio bursts, are strongly influenced by propagation effects in the inhomogeneous turbulent solar corona. In this work, a 3D stochastic description of the propagation process is presented, based on the Fokker-Planck and Langevin equations of radio-wave transport in a medium containing anisotropic electron density fluctuations. Using a numerical treatment based on this model, we investigate the characteristic source sizes and burst decay times for Type III solar radio bursts. Comparison of the simulations with the observations of solar radio bursts shows that predominantly perpendicular density fluctuations in the solar corona are required, with an anisotropy factor ∼0.3 for sources observed at around 30 MHz. The simulations also demonstrate that the photons are isotropized near the region of primary emission, but the waves are then focused by large-scale refraction, leading to plasma radio emission directivity that is characterized by a half-width-half-maximum of about 40~degrees near 30 MHz. The results are applicable to various solar radio bursts produced via plasma emission.

Authors: Eduard P. Kontar, Xingyao Chen, Nicolina Chrysaphi, Natasha L.S. Jeffrey, A. Gordon Emslie, Vratislav Krupar, Milan Maksimovic, Mykola Gordovskyy, Philippa K. Browning
Projects: ALMA,LOw Frequency ARray (LOFAR),Murchison Widefield Array (MWA),Nançay Radioheliograph,Nobeyama Radioheliograph,Owens Valley Solar Array,STEREO,Very Large Array (VLA),Wind

Publication Status: accepted for publication in The Astrophysical Journal
Last Modified: 2019-09-11 04:19
Go to main E-Print page  The Solar Orbiter SPICE instrument - An extreme UV imaging spectrometer  Large-amplitude quasi-periodic pulsations as evidence of impulsive  heating in hot transient loop systems detected in the EUV with SDO/AIA  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Lorentz Force Evolution Reveals the Energy Build-up Processes during Recurrent Eruptive Solar Flares
Measurement of the Height of the Chromospheric Network Emission from Solar Dynamics Observatory Images
Submillimeter radiation as the thermal component of the Neupert Effect
A Very Narrow RHESSI X-ray Flare on 25 September 2011
First Detection of Plasmoids from Breakout Reconnection on the Sun
A New Type of Jets in a Polar Limb of Solar Coronal Hole
First imaging spectroscopy observations of solar drift pair bursts
Round-Trip Slipping Magnetic Reconnection Observed in a Fan-Spine Jet
A global two-scale helicity proxy from pi-ambiguous solar magnetic fields
Multi-layered Kelvin-Helmholtz Instability in the Solar Corona
Magnetohydrodynamic Seismology of Quiet Solar Active Regions
Testing magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare
Real-time solar image classification: assessing spectral, pixel-based approaches
Modelling Mg II During Solar Flares. II. Non-equilibrium Effects
Calibration of the Instrumental Crosstalk for the Near-IR Imaging Spectropolarimeter at the NST
On the Source Position and Duration of a Solar Type III Radio Burst Observed by LOFAR
Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: Numerical parametric study of 1D loop model
The Eruption of Outer Spine-like Loops Leading to a Double-stage Circular-ribbon Flare
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University