E-Print Archive

There are 4236 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Testing magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare View all abstracts by submitter

Xiaoshuai Zhu   Submitted: 2019-10-09 02:44

Context. On the sun, the magnetic field vector is measured routinely solely in the photosphere. By using these photospheric measurements as a boundary condition, we developed the magnetohydrostatic (MHS) extrapolation to model the solar atmosphere. The model makes assumptions about the relative importance of magnetic and non-magnetic forces. While the solar corona is force-free, this is not the case with regard to the photosphere and chromosphere. Aim. The model has previously been tested with an exact equilibria (Zhu & Wiegelmann 2018). Here we present a more challenging and more realistic test of our model with the radiative MHD simulation of a solar flare. Methods. By using the optimization method, the MHS model computes the magnetic field, plasma pressure and density self-consistently. The nonlinear force-free field (NLFFF) and gravity-stratified atmosphere along the field line are assumed as the initial conditions for optimization. Results. Compared with the NLFFF, the MHS model provides an improved magnetic field not only in magnitude and direction, but also in magnetic connectivity. In addition, the MHS model is capable of recovering the main structure of plasma in the photosphere and chromosphere.

Authors: Xiaoshuai Zhu & Thomas Wiegelmann
Projects:

Publication Status: Accepted for publication in A&A
Last Modified: 2019-10-14 09:00
Go to main E-Print page  Magnetohydrodynamic Seismology of Quiet Solar Active Regions  Real-time solar image classification: assessing spectral, pixel-based approaches  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University