E-Print Archive

There are 4133 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Round-Trip Slipping Magnetic Reconnection Observed in a Fan-Spine Jet View all abstracts by submitter

Yuandeng Shen   Submitted: 2019-10-16 20:57

A solar jet on 2014 July 31, which was accompanied by a GOES C1.3 flare and a mini-filament eruption at the jet base, was studied by using observations taken by the New Vacuum Solar Telescope and the Solar Dynamic Observatory. Magnetic field extrapolation revealed that the jet was confined in a fan-spine magnetic system that hosts a null point at the height of about 9 Mm from the solar surface. An inner flare ribbon surrounded by an outer circular ribbon and a remote ribbon were observed to be associated with the eruption, in which the inner and remote ribbons respectively located at the footprints of the inner and outer spines, while the circular one manifested the footprint of the fan structure. It is interesting that the circular ribbon's west part showed an interesting round-trip slipping motion, while the inner ribbon and the circular ribbon's east part displayed a northward slipping motion. Our analysis results indicate that the slipping motions of the inner and the circular flare ribbons reflected the slipping magnetic reconnection process in the fan quasi-separatrix layer, while the remote ribbon was associated with the magnetic reconnection at the null point. In addition, the filament eruption was probably triggered by the magnetic cancellation around its south end, which further drove the slipping reconnection in the fan quasi-separatrix layer and the reconnection at the null point.

Authors: Yuandeng Shen; Zhining Qu; Chengrui Zhou; Yadan Duan; Zehao Tang; Ding Yuan
Projects: SDO-AIA

Publication Status: accepted by ApJL
Last Modified: 2019-10-18 09:50
Go to main E-Print page  First imaging spectroscopy observations of solar drift pair bursts  A global two-scale helicity proxy from pi-ambiguous solar magnetic fields  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Lorentz Force Evolution Reveals the Energy Build-up Processes during Recurrent Eruptive Solar Flares
Measurement of the Height of the Chromospheric Network Emission from Solar Dynamics Observatory Images
Submillimeter radiation as the thermal component of the Neupert Effect
A Very Narrow RHESSI X-ray Flare on 25 September 2011
First Detection of Plasmoids from Breakout Reconnection on the Sun
A New Type of Jets in a Polar Limb of Solar Coronal Hole
First imaging spectroscopy observations of solar drift pair bursts
Round-Trip Slipping Magnetic Reconnection Observed in a Fan-Spine Jet
A global two-scale helicity proxy from pi-ambiguous solar magnetic fields
Multi-layered Kelvin-Helmholtz Instability in the Solar Corona
Magnetohydrodynamic Seismology of Quiet Solar Active Regions
Testing magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare
Real-time solar image classification: assessing spectral, pixel-based approaches
Modelling Mg II During Solar Flares. II. Non-equilibrium Effects
Calibration of the Instrumental Crosstalk for the Near-IR Imaging Spectropolarimeter at the NST
On the Source Position and Duration of a Solar Type III Radio Burst Observed by LOFAR
Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: Numerical parametric study of 1D loop model
The Eruption of Outer Spine-like Loops Leading to a Double-stage Circular-ribbon Flare
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University