E-Print Archive

There are 4133 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Submillimeter radiation as the thermal component of the Neupert Effect View all abstracts by submitter

Guillermo Giménez de Castro   Submitted: 2019-11-05 02:59

The Neupert effect is the empirical observation that the time evolution of non-thermal emission (e.g. hard X-rays) is frequently proportional to the time derivative of the thermal emission flux (soft X-rays), or, vice versa, that time integrated non-thermal flux is proportional to thermal flux. We analyzed the GOES M2.2 event SOL2011-02-14T17:25, and found that the 212 GHz emission plays quite well the role of the thermal component of the Neupert effect. We show that the maximum of the hard X-ray flux for energies above 50 keV is coincident in time with the time-derivative of the 212 GHz flux, within the uncertainties. The microwave flux density at 15.4 GHz, produced by optically thin gyrosynchrotron mechanism, and hard-X rays above 25 keV mark the typical impulsive phase, and have similar time evolution. On the other hand, the 12 GHz emission is delayed by about 25 seconds with respect of the microwave and hard X-ray peak. We argue that this delay cannot be explained by magnetic trapping of non-thermal electrons. With all the observational evidence, we suggest that the 212 GHz emission is produced by thermal bremsstrahlung, initially in the chromosphere, and shifting to optically thin emission from thehot coronal loops at the end of the gradual phase.

Authors: Valle Silva, J.F., Gim?nez de Castro, C.G., Simões, P.J.A., Raulin, J.-P.
Projects: Fermi/GBM

Publication Status: Published on line
Last Modified: 2019-11-06 10:36
Go to main E-Print page  Measurement of the Height of the Chromospheric Network Emission from Solar Dynamics Observatory Images  A Very Narrow RHESSI X-ray Flare on 25 September 2011  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Lorentz Force Evolution Reveals the Energy Build-up Processes during Recurrent Eruptive Solar Flares
Measurement of the Height of the Chromospheric Network Emission from Solar Dynamics Observatory Images
Submillimeter radiation as the thermal component of the Neupert Effect
A Very Narrow RHESSI X-ray Flare on 25 September 2011
First Detection of Plasmoids from Breakout Reconnection on the Sun
A New Type of Jets in a Polar Limb of Solar Coronal Hole
First imaging spectroscopy observations of solar drift pair bursts
Round-Trip Slipping Magnetic Reconnection Observed in a Fan-Spine Jet
A global two-scale helicity proxy from pi-ambiguous solar magnetic fields
Multi-layered Kelvin-Helmholtz Instability in the Solar Corona
Magnetohydrodynamic Seismology of Quiet Solar Active Regions
Testing magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare
Real-time solar image classification: assessing spectral, pixel-based approaches
Modelling Mg II During Solar Flares. II. Non-equilibrium Effects
Calibration of the Instrumental Crosstalk for the Near-IR Imaging Spectropolarimeter at the NST
On the Source Position and Duration of a Solar Type III Radio Burst Observed by LOFAR
Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: Numerical parametric study of 1D loop model
The Eruption of Outer Spine-like Loops Leading to a Double-stage Circular-ribbon Flare
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University