E-Print Archive

There are 4172 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Measuring and modeling the rate of separator reconnection between an emerging and existing active region View all abstracts by submitter

Marika Isabel McCarthy   Submitted: 2019-11-18 10:54

Magnetic reconnection occurs when new flux emerges into the corona and becomes incorporated into the existing coronal field. A new active region (AR) emerging in the vicinity of an existing AR provides a convenient laboratory in which reconnection of this kind can be quantified. We use high time-cadence 171 Å data from SDO/AIA focused on new/old active region pair 11147/11149, to quantify reconnection. We identify new loops as brightenings within a strip of pixels between the regions. This strategy is premised on the assumption that the energy brightening a loop originates in magnetic reconnection. We catalog 301 loops observed in the 48-hour time period beginning with the emergence of AR 11149. The rate at which these loops appear between the two ARs is used to calculate the reconnection rate between them. We then fit these loops with magnetic field, solving for each loop's field strength, geometry, and twist (via its proxy, coronal α ). We find the rate of newly-brightened flux overestimates the flux which could be undergoing reconnection. This excess can be explained by our finding that the interconnecting region is not at its lowest energy (constant- α ) state; the extrapolations exhibit loop-to-loop variation in α . This flux overestimate may result from the slow emergence of AR 11149, allowing time for Taylor relaxation internal to the domain of the reconnected flux to bring the α distribution towards a single value which provides another mechanism for brightening loops after they are first created.

Authors: McCarthy, M.I., Longcope, D.W., Malanushenko, A., McKenzie, D.E.
Projects: SDO-AIA,SDO-HMI

Publication Status: accepted for publication in ApJ
Last Modified: 2019-11-18 20:03
Go to main E-Print page  On the Origin of Solar Torsional Oscillations and Extended Solar Cycle  A Compact Source for Quasi-Periodic Pulsation in an M-class Solar Flare  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Distribution of Time Delays Between Nanoflares in Magnetohydrodynamic Simulations
Data-driven MHD Simulation of the Formation and Initiation of a Large-scale Pre-flare Magnetic Flux Rope in Solar Active Region 12371
NVST observations of collision-induced apparent fan-shaped jets
Cosmic ray interactions in the solar atmosphere
A correlation in the waiting-time distributions of solar flares
Alternative Models of Zebra Patterns in the Event on June 21, 2011
Torsional slow-mode oscillations discovered in the magnetic free energy during solar flares
Particle acceleration in coalescent and squashed magnetic islands II. Particle-In-cell approach
The time step constraint in radiation hydrodynamics
Continuous Null-Point Magnetic Reconnection Builds Up a Torus Unstable Magnetic Flux Rope Triggering the X9.3 Flare in Solar Active Region~12673
A Comparison of Flare Forecasting Methods. IV. Evaluating Consecutive-Day Forecasting Patterns
The New 2018 Version of the Meudon Spectroheliograph
Longitudinal filament oscillations enhanced by two C-class flares
Spatio-temporal energy partitioning in a non-thermally dominated two-loop solar flare
Meteospace, a New Instrument for Solar Survey at the Calern Observatory
Correcting the effect of magnetic tongues on the tilt angle of bipolar active regions
Hi-C 2.1 Observations of Jetlet-like Events at Edges of Solar Magnetic Network Lanes
Fine-scale Explosive Energy Release at Sites of Prospective Magnetic Flux Cancellation in the Core of the Solar Active Region Observed by Hi-C 2.1, IRIS, and SDO
Remote coronal dimmings related to a circular-ribbon flare
Formation and Eruption of a Mini-sigmoid Originating in Coronal Hole

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University