E-Print Archive

There are 4172 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
3D numerical simulations of oscillations in solar prominences View all abstracts by submitter

Andr Adrover   Submitted: 2019-12-10 05:10

Oscillations in solar prominences are a frequent phenomenon, and they have been the subject of many studies. A full understanding of the mechanisms that drive them and their attenuation has not been reached yet, however. We numerically investigate the periodicity and damping of transverse and longitudinal oscillations in a 3D model of a curtain-shaped prominence. We carried out a set of numerical simulations of vertical, transverse and longitudinal oscillations with the high-order finite-difference Pencil Code. We solved the ideal magnetohydrodynamic (MHD) equations for a wide range of parameters, including the width and density of the prominence, and the magnetic field strength (B) of the solar corona. We studied the periodicity and attenuation of the induced oscillations. We found that longitudinal oscillations can be fit with the pendulum model, whose restoring force is the field-aligned component of gravity, but other mechanisms such as pressure gradients may contribute to the movement. On the other hand, transverse oscillations are subject to magnetic forces. The analysis of the parametric survey shows, in agreement with observational studies, that the oscillation period (P) increases with the prominence width. For transverse oscillations we obtained that P increases with density and decreases with B. For longitudinal oscillations we also found that P increases with density, but there are no variations with B. The attenuation of transverse oscillations was investigated by analysing the velocity distribution and computing the Alfvén continuum modes. We conclude that resonant absorption is the mean cause. Damping of longitudinal oscillations is due to some kind of shear numerical viscosity. Our model is a good approximation of a prominence body that nearly reproduces the observed oscillations. However, more realistic simulations that include other terms such as non-adiabatic processes or partially ionised plasmas are necessary to obtain better results.

Authors: A. Adrover-Gonz?lez, J. Terradas
Projects: None

Publication Status: Accepted
Last Modified: 2019-12-11 12:46
Go to main E-Print page  Observations and 3D MHD Modeling of a Confined Helical Jet Launched by a Filament Eruption  Spectral magnetic helicity of solar active regions between 2006 and 2017  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Distribution of Time Delays Between Nanoflares in Magnetohydrodynamic Simulations
Data-driven MHD Simulation of the Formation and Initiation of a Large-scale Pre-flare Magnetic Flux Rope in Solar Active Region 12371
NVST observations of collision-induced apparent fan-shaped jets
Cosmic ray interactions in the solar atmosphere
A correlation in the waiting-time distributions of solar flares
Alternative Models of Zebra Patterns in the Event on June 21, 2011
Torsional slow-mode oscillations discovered in the magnetic free energy during solar flares
Particle acceleration in coalescent and squashed magnetic islands II. Particle-In-cell approach
The time step constraint in radiation hydrodynamics
Continuous Null-Point Magnetic Reconnection Builds Up a Torus Unstable Magnetic Flux Rope Triggering the X9.3 Flare in Solar Active Region~12673
A Comparison of Flare Forecasting Methods. IV. Evaluating Consecutive-Day Forecasting Patterns
The New 2018 Version of the Meudon Spectroheliograph
Longitudinal filament oscillations enhanced by two C-class flares
Spatio-temporal energy partitioning in a non-thermally dominated two-loop solar flare
Meteospace, a New Instrument for Solar Survey at the Calern Observatory
Correcting the effect of magnetic tongues on the tilt angle of bipolar active regions
Hi-C 2.1 Observations of Jetlet-like Events at Edges of Solar Magnetic Network Lanes
Fine-scale Explosive Energy Release at Sites of Prospective Magnetic Flux Cancellation in the Core of the Solar Active Region Observed by Hi-C 2.1, IRIS, and SDO
Remote coronal dimmings related to a circular-ribbon flare
Formation and Eruption of a Mini-sigmoid Originating in Coronal Hole

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University