E-Print Archive

There are 4282 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Observations of solar chromospheric oscillations at 3 mm with ALMA View all abstracts by submitter

Spiros Patsourakos   Submitted: 2019-12-17 10:14

We studied chromospheric oscillations using Atacama Large millimeter and sub-millimeter Array (ALMA) time-series of interferometric observations of the quiet Sun obtained at 3 mm with a 2-s cadence and a spatial resolution of a few arcsec. The same analysis, over the same fields of view and for the same intervals, was performed for simultaneous Atmospheric Imaging Assembly (AIA) image sequences in 1600 Å. Spatially-resolved chromospheric oscillations at 3 mm, with frequencies of 4.2 +- 1.7 mHz are observed in the quiet Sun, in both cell and network. The coherence length-scale of the oscillations is commensurate with the spatial resolution of our ALMA observations. Brightness-temperature fluctuations in individual pixels could reach up to a few hundred K, while the spatially averaged power spectral densities yield rms in the range ~ 55-75 K, i.e., up to ~ 1 % of the averaged brightness temperatures and exhibit a moderate increase towards the limb. For AIA 1600 A, the oscillation frequency is 3.7 +- 1.7 mHz. The relative rms is up to 6 % of the background intensity, with a weak increase towards disk center (cell, average). ALMA 3 mm time-series lag AIA 1600 Å by ~ 100 s, which corresponds to a formation-height difference of ~ 1200 km. The ALMA oscillations that we detected exhibit higher amplitudes than those derived from the lower (~ 10 arcsec) resolution observations at 3.5 mm by White et al. (2006). Chromospheric oscillations are, therefore, not fully resolved at the length-scale of the chromospheric network, and possibly not even at the spatial resolution of our ALMA observations. Any study of transient brightenings in the mm-domain should take into account the oscillations.

Authors: S. Patsourakos, C. A. Alissandrakis, A. Nindos, T. S. Bastian
Projects: ALMA

Publication Status: A&A, in press
Last Modified: 2019-12-18 10:01
Go to main E-Print page  Peculiar solar sources and geospace disturbances on 20-26 August 2018  Observations and 3D MHD Modeling of a Confined Helical Jet Launched by a Filament Eruption  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles
The Solar Orbiter mission - Science Overview
Time Series Analysis of Photospheric Magnetic Parameters of Flare-quiet versus Flaring Active Regions: Scaling Properties of Fluctuations
Image Quality Assessment for Full-Disk Solar Observations with Generative Adversarial Networks
Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning
Active Region Irradiance During Quiescent Periods: New Insights from Sun-as-a-star Spectra
Probing solar flare accelerated electron distributions with prospective X-ray polarimetry missions
Accelerating and Supersonic Density Fluctuations in Coronal Hole Plumes: Signature of Nascent Solar Winds
Sequential Lid Removal in a Triple-Decker Chain of CME-Producing Solar Eruptions
RESIK and RHESSI observations of the 20 September 2002 flare
Starspot mapping with adaptive parallel tempering I: Implementation of computational code
Heating and Eruption of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University