E-Print Archive

There are 4172 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Re-analysis of Lepping's Fitting Method for Magnetic Clouds: Lundquist Fit Reloaded View all abstracts by submitter

Pascal Demoulin   Submitted: 2019-12-20 08:10

Magnetic clouds (MCs) are a subset of ejecta, launched from the Sun as coronal mass ejections. The coherent rotation of the magnetic field vector observed in MCs leads to envision MCs as formed by flux ropes (FRs). Among all the methods used to analyze MCs, Lepping's method (Lepping, Jones, and Burlaga, 1990, J. Geophys. Res. 95, 11957) is the broadest used. While this fitting method does not require the axial field component to vanish at the MC boundaries, this idea is largely spread in publications. Then, we revisit Lepping's method to emphasize its hypothesis and the meaning of its output parameters. As originally defined, these parameters imply a fitted FR which could be smaller or larger than the studied MC. We rather provide a re-interpretation of Lepping's results with a fitted model limited to the observed MC interval. We find that, typically the crossed FRs are asymmetric with a larger side both in size and magnetic flux before or after the FR axis. At the boundary of the largest side we find an axial magnetic field component distributed around 0 which we justify by the physics of solar eruptions. In contrast, at the boundary of the smaller side the axial field distribution is shifted to positive values, as expected with erosion acting during the interplanetary travel. This new analysis of Lepping's results have several implications. First, global quantities, such as magnetic fluxes and helicity, need to be revised depending on the aim (estimating global properties of FRs just after the solar launch or at 1 au). Second, the deduced twist profiles in MCs range quasi-continuously from nearly uniform, to increasing away from the FR axis, up to a reversal near the MC boundaries. There is no trace of outsider cases, but a continuum of cases. Finally, the impact parameter of the remaining FR crossed at 1 au is revised. Its distribution is compatible with weakly flatten FR cross-sections.

Authors: P. Demoulin, S. Dasso, M. Janvier, V. Lanabere
Projects: Wind

Publication Status: 2019, Solar Physics, 294, 172
Last Modified: 2019-12-21 23:20
Go to main E-Print page  A Magnetohydrodynamic Relaxation Method for Non-Force-Free Magnetic Field in Magnetohydrostatic Equilibrium  Excitation of decay-less transverse oscillations of coronal loops by random motions  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Distribution of Time Delays Between Nanoflares in Magnetohydrodynamic Simulations
Data-driven MHD Simulation of the Formation and Initiation of a Large-scale Pre-flare Magnetic Flux Rope in Solar Active Region 12371
NVST observations of collision-induced apparent fan-shaped jets
Cosmic ray interactions in the solar atmosphere
A correlation in the waiting-time distributions of solar flares
Alternative Models of Zebra Patterns in the Event on June 21, 2011
Torsional slow-mode oscillations discovered in the magnetic free energy during solar flares
Particle acceleration in coalescent and squashed magnetic islands II. Particle-In-cell approach
The time step constraint in radiation hydrodynamics
Continuous Null-Point Magnetic Reconnection Builds Up a Torus Unstable Magnetic Flux Rope Triggering the X9.3 Flare in Solar Active Region~12673
A Comparison of Flare Forecasting Methods. IV. Evaluating Consecutive-Day Forecasting Patterns
The New 2018 Version of the Meudon Spectroheliograph
Longitudinal filament oscillations enhanced by two C-class flares
Spatio-temporal energy partitioning in a non-thermally dominated two-loop solar flare
Meteospace, a New Instrument for Solar Survey at the Calern Observatory
Correcting the effect of magnetic tongues on the tilt angle of bipolar active regions
Hi-C 2.1 Observations of Jetlet-like Events at Edges of Solar Magnetic Network Lanes
Fine-scale Explosive Energy Release at Sites of Prospective Magnetic Flux Cancellation in the Core of the Solar Active Region Observed by Hi-C 2.1, IRIS, and SDO
Remote coronal dimmings related to a circular-ribbon flare
Formation and Eruption of a Mini-sigmoid Originating in Coronal Hole

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University