E-Print Archive

There are 4194 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Quantifying the Toroidal Flux of Pre-existing Flux Ropes of CMEs View all abstracts by submitter

Xin Cheng   Submitted: 2019-12-24 19:56

In past decades, much progress has been achieved on the origin and evolution of coronal mass ejections (CMEs). In-situ observations of the counterparts of CMEs, especially magnetic clouds (MCs) near the Earth, have provided measurements of the structure and total flux of CME flux ropes. However, it has been difficult to measure these properties in the erupting CME flux rope, in particular in the pre-existing flux rope. In this work, we propose a model to estimate the toroidal flux of the pre-existing flux rope by subtracting the flux contributed by magnetic reconnection during the eruption from the flux measured in the MC. The flux by the reconnection is derived from geometric properties of two-ribbon flares based on a quasi-2D reconnection model. We then apply the model to four CME/flare events and find that the ratio of toroidal flux in the pre-existing flux rope to that of the associated MC lies in the range of 0.40-0.88. It indicates that the toroidal flux of the pre-existing flux rope has an important contribution to that of the CME flux rope and is usually at least as large as the flux arising from the eruption process for the selected events.

Authors: C. Xing, X. Cheng, Jiong Qiu, Qiang Hu, E. R. Priest, M. D. Ding
Projects: None

Publication Status: 10 pages, 9 figures, 1 table; accepted for publication in ApJ
Last Modified: 2019-12-25 10:19
Go to main E-Print page  Formation and Eruption of a Mini-sigmoid Originating in Coronal Hole  A Magnetohydrodynamic Relaxation Method for Non-Force-Free Magnetic Field in Magnetohydrostatic Equilibrium  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
HATS: A Ground-Based Telescope to Explore the THz Domain
Failed prominence eruptions near 24 cycle maximum
Properties of Streamer Wave Events Observed During the STEREO Era
Simulating Solar Flare Irradiance with Multithreaded Models of Flare Arcades
Counter-streaming strahls and heat flux dropouts as possible signatures of local particle acceleration in the solar wind
New Star Observations with NuSTAR: Flares from Young Stellar Objects in the ρ Ophiuchi Cloud Complex in Hard X-Rays
Accelerated Electrons Observed Down to <7 keV in a NuSTAR Solar Microflare
Magnetic helicity dissipation and production in an ideal MHD code
Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis
Properties of ICME-Induced Forbush decreases at Earth and Mars
White-light Emission and Chromospheric Response by an X1.8-class Flare on 2012 October 23
Helicity and winding fluxes as indicators of twisted flux emergence
Magnetic connectivity between the light bridge and penumbra in a sunspot
Can Sub-photospheric Magnetic Reconnection Change the Elemental Composition in the Solar Corona?
Response of SDO/HMI observables to heating of the solar atmosphere by precipitating high-energy electrons
3He-Rich Solar Energetic Particles: Solar Sources
Statistical Study of Hard X-Ray Emitting Electrons Associated with Flare-related Coronal Jets
Rapid Evolution of Type II Spicules Observed in Goode Solar Telescope On-Disk Hα Images
Diagnostics of plasma ionisation using torsional Alfvén waves
Nonequilibrium ionization and ambipolar diffusion in solar magnetic flux emergence processes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University