E-Print Archive

There are 4249 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Spatio-temporal energy partitioning in a non-thermally dominated two-loop solar flare View all abstracts by submitter

Galina Motorina   Submitted: 2020-01-08 04:29

Solar flares show remarkable variety of the energy partitioning between thermal and nonthermal components. Those with a prominent nonthermal component but only a modest thermal one are particularly well suited to study the direct effect of the nonthermal electrons on plasma heating. Here, we analyze such a well observed, impulsive single-spike nonthermal event, a SOL2013-11-05T035054 solar flare, where the plasma heating can be entirely attributed to the energy losses of these impulsively accelerated electrons. Evolution of the energy budget of thermal and nonthermal components during the flare is analysed using X-ray, microwave, and EUV observations and three-dimensional modeling. The results suggest that (i) the flare geometry is consistent with a two-loop morphology and the magnetic energy is likely released due to interaction between these two loops; (ii) the released magnetic energy converted to the nonthermal energy of accelerated electrons only, which is subsequently converted to the thermal energy of the plasma; (iii) the energy is partitioned in these two flaring loops in comparable amounts; (iv) one of these flaring loops remained relatively tenuous but rather hot, while the other remained relatively cool but denser than the first one. Therefore, this solar flare demonstrates an extreme efficiency of conversion of the free magnetic energy to the nonthermal energy of particle acceleration and the energy flow into two loops from the non-thermal to thermal one with a negligible direct heating.

Authors: Galina G. Motorina, Gregory D. Fleishman, Eduard P. Kontar
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2020-01-08 13:14
Go to main E-Print page  Longitudinal filament oscillations enhanced by two C-class flares  Meteospace, a New Instrument for Solar Survey at the Calern Observatory  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23
Numerical simulation of solar photospheric jet-like phenomena caused by magnetic reconnection
Solar Flare-CME Coupling Throughout Two Acceleration Phases of a Fast CME
A new method for estimating global coronal wave properties from their interaction with solar coronal holes
Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps
Multilevel Observations of the Oscillations in the First Active Region of the New Cycle
Standing MHD Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Plasma Environment: Surface Waves
A new facility for airborne solar astronomy: NASA's WB-57 at the 2017 total solar eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Lyman α Variability During Solar Flares Over Solar Cycle 24 Using GOES-15/EUVS-E
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University