E-Print Archive

There are 4499 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The time step constraint in radiation hydrodynamics View all abstracts by submitter

Axel Brandenburg   Submitted: 2020-01-18 04:38

Explicit radiation hydrodynamic simulations of the atmospheres of massive stars and of convection in accretion discs around white dwarfs suffer from prohibitively short time steps due to radiation. This constraint is related to the cooling time rather than the radiative pressure, which also becomes important in hot stars and discs. We show that the radiative time step constraint is governed by the minimum of the sum of the optically thick and thin contributions rather than the smaller one of the two. In simulations with the Pencil Code, their weighting fractions are found empirically. In three-dimensional convective accretion disc simulations, the Deardorff term is found to be the main contributor to the enthalpy flux rather than the superadiabatic gradient. We conclude with a discussion of how the radiative time step problem could be mitigated in certain types of investigations.

Authors: Axel Brandenburg, Upasana Das
Projects: None

Publication Status: Geophys. Astrophys. Fluid Dyn. 114, 162-195 (2020)
Last Modified: 2020-01-19 14:06
Go to main E-Print page  Particle acceleration in coalescent and squashed magnetic islands II. Particle-In-cell approach  Continuous Null-Point Magnetic Reconnection Builds Up a Torus Unstable  Magnetic Flux Rope Triggering the X9.3 Flare in Solar Active Region~12673  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?
Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations
Slow magnetoacoustic oscillations in stellar coronal loops
Kink Oscillation of a Flux Rope During a Failed Solar Eruption
A publicly available multi-observatory data set of an enhanced network patch from the Photosphere
Type IV Radio Bursts and Associated Active Regions in the Sunspot Cycle 24
Theory of Fluid Instabilities in Partially Ionized Plasmas: An Overview
Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes
The Coupling of an EUV Coronal Wave and Ion Acceleration in a Fermi-LAT Behind-the-Limb Solar Flare
Reconciling Power Law Slopes in Solar Flare and Nanoflare Size Distributions
A Model of Homologous Confined and Ejective Eruptions Involving Kink Instability and Flux Cancellation
Detection of stellar-like abundance anomalies in the slow solar wind
Magnetosheath jet occurrence rate in relation to CMEs and SIRs
Microwave Perspective on Magnetic Breakout Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University