E-Print Archive

There are 4194 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Can Sub-photospheric Magnetic Reconnection Change the Elemental Composition in the Solar Corona? View all abstracts by submitter

Deb Baker   Submitted: 2020-03-09 02:47

Within the coronae of stars, abundances of those elements with low first ionization potential (FIP) often differ from their photospheric values. The coronae of the Sun and solar-type stars mostly show enhancements of low- FIP elements (the FIP effect) while more active stars such as M-dwarfs have coronae generally characterized by the inverse-FIP effect (I-FIP). Here we observe patches of I-FIP effect solar plasma in AR 12673, a highly complex beta/gamma/delta active region. We argue that the umbrae of coalescing sunspots and more specifically strong light bridges within the umbrae, are preferential locations for observing I-FIP effect plasma. Furthermore, the magnetic complexity of the active region and major episodes of fast flux emergence also lead to repetitive and intense flares. The induced evaporation of the chromospheric plasma in flare ribbons crossing umbrae enables the observation of four localized patches of I-FIP effect plasma in the corona of AR 12673. These observations can be interpreted in the context of the ponderomotive force fractionation model which predicts that plasma with I-FIP effect composition is created by the refraction of waves coming from below the chromosphere. We propose that the waves generating the I-FIP effect plasma in solar active regions are generated by sub-photospheric reconnection of coalescing flux systems. Although we only glimpse signatures of I-FIP effect fractionation produced by this interaction in patches on the Sun, on highly active M-stars it may be the dominant process.

Authors: Deborah Baker, Lidia van Driel-Gesztelyi, David H. Brooks, Pascal Demoulin, Gherardo Valori, David M. Long, J. Martin Laming, Andy S. H. To, Alexander W. James
Projects: None

Publication Status: Accepted ApJ
Last Modified: 2020-03-11 13:12
Go to main E-Print page  Magnetic connectivity between the light bridge and penumbra in a sunspot  Response of SDO/HMI observables to heating of the solar atmosphere by precipitating high-energy electrons  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
HATS: A Ground-Based Telescope to Explore the THz Domain
Failed prominence eruptions near 24 cycle maximum
Properties of Streamer Wave Events Observed During the STEREO Era
Simulating Solar Flare Irradiance with Multithreaded Models of Flare Arcades
Counter-streaming strahls and heat flux dropouts as possible signatures of local particle acceleration in the solar wind
New Star Observations with NuSTAR: Flares from Young Stellar Objects in the ρ Ophiuchi Cloud Complex in Hard X-Rays
Accelerated Electrons Observed Down to <7 keV in a NuSTAR Solar Microflare
Magnetic helicity dissipation and production in an ideal MHD code
Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis
Properties of ICME-Induced Forbush decreases at Earth and Mars
White-light Emission and Chromospheric Response by an X1.8-class Flare on 2012 October 23
Helicity and winding fluxes as indicators of twisted flux emergence
Magnetic connectivity between the light bridge and penumbra in a sunspot
Can Sub-photospheric Magnetic Reconnection Change the Elemental Composition in the Solar Corona?
Response of SDO/HMI observables to heating of the solar atmosphere by precipitating high-energy electrons
3He-Rich Solar Energetic Particles: Solar Sources
Statistical Study of Hard X-Ray Emitting Electrons Associated with Flare-related Coronal Jets
Rapid Evolution of Type II Spicules Observed in Goode Solar Telescope On-Disk Hα Images
Diagnostics of plasma ionisation using torsional Alfvén waves
Nonequilibrium ionization and ambipolar diffusion in solar magnetic flux emergence processes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University