E-Print Archive

There are 4249 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis View all abstracts by submitter

Pascal Demoulin   Submitted: 2020-03-12 04:42

Magnetic clouds (MCs) are large-scale interplanetary transient structures in the heliosphere that travel from the Sun into the interplanetary medium. The internal magnetic field lines inside the MCs are twisted, forming a flux rope (FR). This magnetic field structuring is determined by its initial solar configuration, by the processes involved during its eruption from the Sun, and by the dynamical evolution during its interaction with the ambient solar wind. One of the most important properties of the magnetic structure inside MCs is the twist of the field lines forming the FR (the number of turns per unit length). The detailed internal distribution of twist is under debate mainly because the magnetic field (B) in MCs is observed only along the spacecraft trajectory, and thus it is necessary to complete observations with theoretical assumptions. Estimating the twist from the study of a single event is difficult because the field fluctuations significantly increase the noise of the observed B time series and thus the bias of the deduced twist. The superposed epoch applied to MCs has proven to be a powerful technique, permitting the extraction of their common features, and removing the peculiarity of individual cases. We apply a superposed epoch technique to analyse the magnetic components in the local FR frame of a significant sample of moderately asymmetric MCs observed at 1 au. From the superposed profile of B components in the FR frame, we determine the typical twist distribution in MCs. The twist is nearly uniform in the FR core (central half part), and it increases moderately, up to a factor two, towards the MC boundaries. This profile is close to the Lundquist field model limited to the FR core where the axial field component is above about one-third of its central value.

Authors: Lanabere V., Dasso S., Démoulin P., Janvier M., Rodriguez L. and Masías-Meza J.J.
Projects: Wind

Publication Status: A&A 635, A85 (2020)
Last Modified: 2020-03-12 14:25
Go to main E-Print page  Magnetic helicity dissipation and production in an ideal MHD code  Properties of ICME-Induced Forbush decreases at Earth and Mars  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23
Numerical simulation of solar photospheric jet-like phenomena caused by magnetic reconnection
Solar Flare-CME Coupling Throughout Two Acceleration Phases of a Fast CME
A new method for estimating global coronal wave properties from their interaction with solar coronal holes
Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps
Multilevel Observations of the Oscillations in the First Active Region of the New Cycle
Standing MHD Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Plasma Environment: Surface Waves
A new facility for airborne solar astronomy: NASA's WB-57 at the 2017 total solar eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Lyman α Variability During Solar Flares Over Solar Cycle 24 Using GOES-15/EUVS-E
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University