E-Print Archive

There are 4559 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis View all abstracts by submitter

Pascal Demoulin   Submitted: 2020-03-12 04:42

Magnetic clouds (MCs) are large-scale interplanetary transient structures in the heliosphere that travel from the Sun into the interplanetary medium. The internal magnetic field lines inside the MCs are twisted, forming a flux rope (FR). This magnetic field structuring is determined by its initial solar configuration, by the processes involved during its eruption from the Sun, and by the dynamical evolution during its interaction with the ambient solar wind. One of the most important properties of the magnetic structure inside MCs is the twist of the field lines forming the FR (the number of turns per unit length). The detailed internal distribution of twist is under debate mainly because the magnetic field (B) in MCs is observed only along the spacecraft trajectory, and thus it is necessary to complete observations with theoretical assumptions. Estimating the twist from the study of a single event is difficult because the field fluctuations significantly increase the noise of the observed B time series and thus the bias of the deduced twist. The superposed epoch applied to MCs has proven to be a powerful technique, permitting the extraction of their common features, and removing the peculiarity of individual cases. We apply a superposed epoch technique to analyse the magnetic components in the local FR frame of a significant sample of moderately asymmetric MCs observed at 1 au. From the superposed profile of B components in the FR frame, we determine the typical twist distribution in MCs. The twist is nearly uniform in the FR core (central half part), and it increases moderately, up to a factor two, towards the MC boundaries. This profile is close to the Lundquist field model limited to the FR core where the axial field component is above about one-third of its central value.

Authors: Lanabere V., Dasso S., Démoulin P., Janvier M., Rodriguez L. and Masías-Meza J.J.
Projects: Wind

Publication Status: A&A 635, A85 (2020)
Last Modified: 2020-03-12 14:25
Go to main E-Print page  Magnetic helicity dissipation and production in an ideal MHD code  Properties of ICME-Induced Forbush decreases at Earth and Mars  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Comparison of solar activity proxies: eigenvectors versus averaged sunspot numbers
A comparative study of resistivity models for simulations of magnetic reconnection in the solar atmosphere
Links of Terrestrial Volcanic Eruptions to Solar Activity and Solar Magnetic Field
Periodicities in Solar Activity, Solar Radiation and Their Links with Terrestrial Environment
Transverse vertical oscillations during the contraction and expansion of coronal loops
New Evidence on the Origin of Solar Wind Microstreams/Switchbacks
The Merging of a Coronal Dimming and the Southern Polar Coronal Hole
Complete replacement of magnetic flux in a flux rope during a coronal mass ejection
The SunPy Project: An Interoperable Ecosystem for Solar Data Analysis
Evidence of external reconnection between an erupting mini-filament and ambient loops observed by Solar Orbiter/EUI
Ultra-high-resolution Observations of Persistent Null-point Reconnection in the Solar Corona
The Evolution of Plasma Composition During a Solar Flare
The efficiency of electron acceleration during the impulsive phase of a solar flare
Evolution of Solar Eruptive Events: Investigating the Relationships Among Magnetic Reconnection, Flare Energy Release, and Coronal Mass Ejections
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University