E-Print Archive

There are 4249 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Accelerated Electrons Observed Down to <7 keV in a NuSTAR Solar Microflare View all abstracts by submitter

Lindsay Glesener   Submitted: 2020-03-18 13:17

We report the detection of emission from a nonthermal electron distribution in a small solar microflare (GOES class A5.7) observed by the Nuclear Spectroscopic Telescope Array, with supporting observation by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The flaring plasma is well accounted for by a thick-target model of accelerated electrons collisionally thermalizing within the loop, akin to the "coronal thick-target" behavior occasionally observed in larger flares. This is the first positive detection of nonthermal hard X-rays from the Sun using a direct imager (as opposed to indirectly imaging instruments). The accelerated electron distribution has a spectral index of 6.3 ± 0.7, extends down to at least 6.5 keV, and deposits energy at a rate of ~2 x 1027 s-1>, heating the flare loop to at least 10 MK. The existence of dominant nonthermal emission in X-rays down to <5 keV means that RHESSI emission is almost entirely nonthermal, contrary to what is usually assumed in RHESSI spectroscopy. The ratio of nonthermal to thermal energies is similar to that of large flares, in contrast to what has been found in previous studies of small RHESSI flares. We suggest that a coronal thick target may be a common property of many small microflares based on the average electron energy and collisional mean free path. Future observations of this kind will enable understanding of how flare particle acceleration changes across energy scales, and will aid the push toward the observational regime of nanoflares, which are a possible source of significant coronal heating.

Authors: Lindsay Glesener, Säm Krucker, Jessie Duncan, Iain G. Hannah, Brian W. Grefenstette, Bin Chen, David M. Smith, Stephen M. White, and Hugh Hudson
Projects: NuSTAR

Publication Status: Published
Last Modified: 2020-03-18 17:11
Go to main E-Print page  New Star Observations with NuSTAR: Flares from Young Stellar Objects in the ρ Ophiuchi Cloud Complex in Hard X-Rays  Magnetic helicity dissipation and production in an ideal MHD code  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23
Numerical simulation of solar photospheric jet-like phenomena caused by magnetic reconnection
Solar Flare-CME Coupling Throughout Two Acceleration Phases of a Fast CME
A new method for estimating global coronal wave properties from their interaction with solar coronal holes
Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps
Multilevel Observations of the Oscillations in the First Active Region of the New Cycle
Standing MHD Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Plasma Environment: Surface Waves
A new facility for airborne solar astronomy: NASA's WB-57 at the 2017 total solar eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Lyman α Variability During Solar Flares Over Solar Cycle 24 Using GOES-15/EUVS-E
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University