E-Print Archive

There are 4249 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Simulating Solar Flare Irradiance with Multithreaded Models of Flare Arcades View all abstracts by submitter

Jeffrey Reep   Submitted: 2020-03-25 16:05

Understanding how energy is released in flares is one of the central problems of solar and stellar astrophysics. Observations of high temperature flare plasma hold many potential clues as to the nature of this energy release. It is clear, however, that flares are not composed of a few impulsively heated loops, but are the result of heating on many small-scale threads that are energized over time, making it difficult to compare observations and numerical simulations in detail. Several previous studies have shown that it is possible to reproduce some aspects of the observed emission by considering the flare as a sequence of independently heated loops, but these studies generally focus on small-scale features while ignoring the global features of the flare. In this paper, we develop a multithreaded model that encompasses the time-varying geometry and heating rate for a series of successively-heated loops comprising an arcade. To validate, we compare with spectral observations of five flares made with the MinXSS CubeSat as well as light curves measured with GOES/XRS and SDO/AIA. We show that this model can successfully reproduce the light curves and quasi-periodic pulsations in GOES/XRS, the soft X-ray spectra seen with MinXSS, and the light curves in various AIA passbands. The AIA light curves are most consistent with long duration heating, but elemental abundances cannot be constrained with the model. Finally, we show how this model can be used to extrapolate to spectra of extreme events that can predict irradiance across a wide wavelength range including unobserved wavelengths.

Authors: Jeffrey W. Reep, Harry P. Warren, Christopher S. Moore, Crisel Suarez, Laura A. Hayes
Projects: None

Publication Status: Under review by ApJ
Last Modified: 2020-03-26 12:25
Go to main E-Print page  Properties of Streamer Wave Events Observed During the STEREO Era  Counter-streaming strahls and heat flux dropouts as possible signatures of local particle acceleration in the solar wind  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23
Numerical simulation of solar photospheric jet-like phenomena caused by magnetic reconnection
Solar Flare-CME Coupling Throughout Two Acceleration Phases of a Fast CME
A new method for estimating global coronal wave properties from their interaction with solar coronal holes
Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps
Multilevel Observations of the Oscillations in the First Active Region of the New Cycle
Standing MHD Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Plasma Environment: Surface Waves
A new facility for airborne solar astronomy: NASA's WB-57 at the 2017 total solar eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Lyman α Variability During Solar Flares Over Solar Cycle 24 Using GOES-15/EUVS-E
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University