E-Print Archive

There are 4236 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

HATS: A Ground-Based Telescope to Explore the THz Domain View all abstracts by submitter

C. Guillermo Giménez de Castro   Submitted: 2020-03-31 07:04

The almost unexplored frequency window from submillimeter to mid-infrared (mid-IR) may bring new clues about the particle acceleration and transport processes and the atmospheric thermal response during solar flares. Because of its technical complexity and the special atmospheric environment needed, observations at these frequencies are very sparse. The High Altitude THz Solar Photometer (HATS) is a full-Sun ground-based telescope designed to observe the continuum from the submillimeter to the mid-IR. It has a 457-mm spherical mirror with the sensor in its primary focus. The sensor is a Golay cell with high sensitivity in a very wide frequency range. The telescope has a polar mount, and a custom-built data acquisition system based on a 32 ksamples per second, 24 bits (72 dB dynamic range), 8 channels analog-to-digital board. Changing only the composition of the low- and band-pass filters in front of the Golay cell, the telescope can be setup to detect very different frequency bands; making the instrument very versatile. In this article we describe the telescope characteristics and its development status. Moreover, we give estimates of the expected fluxes during flares.

Authors: C.G. Giménez de Castro, J.-P. Raulin, A. Valio, G. Alaia, V. Alvarenga, E.C. Bortolucci, S.H. Fernandes, C. Francile, T. Giorgetti, A.S. Kudaka, F.M. Lopez, R. Marcon, A. Marun, M. Zaquela
Projects: None

Publication Status: Accepted in Solar Physics
Last Modified: 2020-03-31 10:44
Go to main E-Print page  FOXSI-2 Solar Microflares. I. Multi-instrument Differential Emission Measure Analysis and Thermal Energies  Failed prominence eruptions near 24 cycle maximum   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University