E-Print Archive

There are 4236 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Predicting Coronal Mass Ejections Using SDO/HMI Vector Magnetic Data Products and Recurrent Neural Networks View all abstracts by submitter

Jason T. L. Wang   Submitted: 2020-04-11 12:14

We present two recurrent neural networks (RNNs), one based on gated recurrent units and the other based on long short-term memory, for predicting whether an active region (AR) that produces an M- or X-class flare will also produce a coronal mass ejection (CME). We model data samples in an AR as time series and use the RNNs to capture temporal information of the data samples. Each data sample has 18 physical parameters, or features, derived from photospheric vector magnetic field data taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We survey M- and X-class flares that occurred from 2010 May to 2019 May using the Geostationary Operational Environmental Satellite's X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and select those flares with identified ARs in the NCEI catalogs. In addition, we extract the associations of flares and CMEs from the Space Weather Database Of Notifications, Knowledge, Information (DONKI). We use the information gathered above to build the labels (positive versus negative) of the data samples at hand. Experimental results demonstrate the superiority of our RNNs over closely related machine learning methods in predicting the labels of the data samples. We also discuss an extension of our approach to predict a probabilistic estimate of how likely an M- or X-class flare will initiate a CME, with good performance results. To our knowledge this is the first time that RNNs have been used for CME prediction.

Authors: Hao Liu, Chang Liu, Jason T. L. Wang, Haimin Wang
Projects: SDO-HMI

Publication Status: The Astrophysical Journal, Volume 890, Number 1, 2020
Last Modified: 2020-04-12 15:55
Go to main E-Print page  Transverse oscillations of a double-strutured solar filament   Magnetic Structure of an Erupting Filament  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University