E-Print Archive

There are 4236 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles View all abstracts by submitter

Giuseppe Nistico   Submitted: 2020-04-14 09:57

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of Parker Solar Probe's (PSP) orbit, WISPR is able to image ``locally'' coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP's high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward. A first study, undertaken by citet{Liewer2019}, shows how different coronal features (e.g., streamers, flux ropes) appear in the field of view of WISPR by means of raytracing simulations. In particular, they analyze the effects of the spatial resolution changes on both the images and the associated height-time maps, and introduce the fundamentals for geometric triangulation. In this follow-up paper, we focus on the study of the total brightness of a simple, spherical, plasma density structure, to understand how the analysis of Thomson-scattered emission by the electrons in a coronal feature can shed light into the determination of its kinematic properties. We investigate two cases: {it (a)} a density sphere at a constant distance from the Sun for different heliographic longitudes; {it (b)} a density sphere moving outwardly with constant speed. The study allows us to characterize the effects of the varying heliocentric distance of the observer and scattering angle on the total brightness observed, which we exploit to contribute to a better determination of the position and speed of the coronal features observed by WISPR.

Authors: Giuseppe Nistic̣, Volker Bothmer, Angelos Vourlidas, Paulett Liewer, Arnaud Thernisien, Guillermo Stenborg, Russell Howard
Projects: PSP-WISPR

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2020-04-14 11:18
Go to main E-Print page  Wave amplitude modulation in fan loops as observed by AIA/SDO  Transverse oscillations of a double-strutured solar filament   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University