E-Print Archive

There are 4396 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Plasma Diagnostics from Active Region and Quiet-Sun Spectra Observed by Hinode/EIS: Quantifying the Departures from a Maxwellian Distribution View all abstracts by submitter

Juraj Lörinčík   Submitted: 2020-04-21 06:56

We perform plasma diagnostics, including that of the non-Maxwellian κ-distributions, in several structures observed in the solar corona by the Extreme-Ultraviolet Imaging Spectrometer (EIS) on board the Hinode spacecraft. To prevent uncertainties due to the in-flight calibration of EIS, we selected spectral atlases observed shortly after the launch of the mission. One spectral atlas contains an observation of an active region, while the other is an off-limb quiet-Sun region. To minimize the uncertainties of the diagnostics, we rely only on strong lines and average the signal over a spatial area within selected structures. Multiple plasma parameters are diagnosed, such as the electron density, the differential emission measure, and the non-Maxwellian parameter κ. To do that, we use a simple, well-converging iterative scheme based on refining the initial density estimates via the differential emission measure (DEM) and κ. We find that while the quiet-Sun spectra are consistent with a Maxwellian distribution, the coronal loops and moss observed within the active region are strongly non-Maxwellian with κ ≤ 3. These results were checked by calculating synthetic ratios using DEMs obtained as a function of κ. Ratios predicted using the DEMs assuming κ-distributions converged to the ratios observed in the quiet Sun and coronal loops. To our knowledge, this work presents a strong evidence of the presence of different electron distributions between two physically distinct parts of the solar corona.

Authors: Juraj Lörinčík, Jaroslav Dudík, Giulio del Zanna, Elena Dzifčáková, Helen E. Mason
Projects: Hinode/EIS

Publication Status: published
Last Modified: 2020-04-22 09:43
Go to main E-Print page  First Observation of a Type II Solar Radio Burst Transitioning between a Stationary and Drifting State  Sunquakes of Solar Cycle 24  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 17–23
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University