E-Print Archive

There are 4236 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology View all abstracts by submitter

Norbert Magyar   Submitted: 2020-04-30 02:28

Using full three-dimensional magnetohydrodynamic numerical simulations, we study the effects of magnetic field sigmoidity or helicity on the properties of the fundamental kink oscillation of solar coronal loops. Our model consists of a single denser coronal loop, embedded in a plasma with dipolar force-free magnetic field with a constant α parameter. For the loop with no sigmoidity, we find that the numerically determined oscillation period of the fundamental kink mode matches the theoretical period calculated using WKB theory. In contrast, with increasing sigmoidity of the loop, the actual period is increasingly smaller than the one estimated by WKB theory. Translated through coronal seismology, increasing sigmoidity results in magnetic field estimates which are increasingly shifting towards higher values, and even surpassing the average value for the highest α value considered. Nevertheless, the estimated range of the coronal magnetic field value lies within the mimimal/maximal limits, proving the robustness coronal seismology. We propose that the discrepancy in the estimations of the absolute value of the force-free magnetic field could be exploited seismologically to determine the free energy of coronal loops, if averages of the internal magnetic field and density can be reliably estimated by other methods.

Authors: N. Magyar; V. M. Nakariakov
Projects: None

Publication Status: Accepted for publication
Last Modified: 2020-05-03 13:58
Go to main E-Print page  On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms  Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University