E-Print Archive

There are 4236 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms View all abstracts by submitter

Ilya Chertok   Submitted: 2020-05-01 04:30

More than 140 isolated non-recurrent geomagnetic storms (GMSs) of various intensities from extreme to weak are considered, which are reliably identified with solar eruptive sources (coronal mass ejections, CMEs). The analysis aims to obtain a possibly complete picture of the relationship between the transit time of propagation of CMEs and interplanetary coronal mass ejections (ICMEs) from the Sun to the Earth (more precisely, the time interval dtp from the moment of an eruption until the peak of the corresponding GMS) and the maximum intensity of this GMS, as measured by the disturbance storm time geomagnetic index Dst. Two groups of events are singled out: one includes GMSs, the source of which was an eruption from an active region (AR events), the other GMSs caused by filament eruptions from quiescent areas of the Sun located outside ARs (QS events). The distribution of the large number of the analyzed events on a dtp - Dst plane confirms and substantially clarifies the known regularities. The AR events are characterized by a shorter transit time (dtp ~ 1-4 days) and much stronger GMSs (Dst up to -600 nT mainly) in comparison with the QS events (dtp ~ 3-5 days, Dst > -200 nT). For events of both groups, the shorter transit time of CMEs/ICMEs, the more intense GMSs; in particular, for AR events when dtp declines from 4 to 1 day, Dst decreases on average from -100 to -470 nT and can reach -900 nT. From the point of view of the nature of GMSs and their sources on the Sun, the obtained results mean that both the speed of CMEs/ICMEs and the strength of the magnetic field transferred by them are largely determined by the parameters of the corresponding eruptions, in particular, by the eruptive magnetic flux and the released energy.

Authors: I.M. Chertok
Projects: None

Publication Status: Solar Phys., accepted
Last Modified: 2020-05-03 13:58
Go to main E-Print page  Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24  Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University