E-Print Archive

There are 4291 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer View all abstracts by submitter

Kenneth Phillips   Submitted: 2020-05-11 06:26

The Bent Crystal Spectrometer (BCS) on the NASA Solar Maximum Mission spacecraft observed the X-ray spectra of numerous solar flares during the periods 1980 February to November and 1984-1989. The instrument, the first of its kind to use curved crystal technology, observed the resonance lines of He-like Ca (caxix) and Fe (fexxv) and neighboring satellite lines, allowing the study of the rapid evolution of flare plasma temperature, turbulence, mass motions etc. To date there has not been a solar X-ray spectrometer with comparable spectral and time resolution, while subsequent solar cycles have delivered far fewer and less intense flares. The BCS data archive thus offers an unparalleled resource for flare studies. A recent re-assessment of the BCS calibration and its operations is extended here by using data during a spacecraft scan in the course of a flare on 1980 November 6 that highlights small deformations in the crystal curvature of the important channel~1 (viewing lines of Ca XIX and satellites). The results explain long-standing anomalies in spectral line ratios which have been widely discussed in the past. We also provide an in-flight estimation of the BCS collimator field of view which improves the absolute intensity calibration of the BCS. The BCS channel~1 background is shown to be entirely due to solar continuum radiation, confirming earlier analyses implying a time-variable flare abundance of Ca. We suggest that BCS high-resolution Ca XIX and Fe XXV line spectra be used as templates for the analysis of X-ray spectra of non-solar sources.

Authors: J. Sylwester, B. Sylwester, K. J. H. Phillips, A. Kepa, C. G. Rapley
Projects: Solar Max Misson

Publication Status: The Astrophysical Journal, to be published (May 2020)
Last Modified: 2020-05-11 15:28
Go to main E-Print page  Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra  Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University