E-Print Archive

There are 4257 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra View all abstracts by submitter

Vasyl Yurchyshyn   Submitted: 2020-05-11 07:19

Umbral flashes (UFs) are emissions in the core of chromospheric lines caused by upward propagating waves steepening into shocks. UFs are followed by an expanding blue shifted umbral wave (UW) and red-shifted plasma returning to the initial state. Here we use 5 s cadence images acquired at pm0.04~nm off the Hα line center by the Visible Imaging Spectrometer (VIS) installed on the Goode Solar Telescope (GST) to detect the origin of UFs and UWs in a sunspot with a uniform umbra free of LBs and clusters of umbral dots. The data showed that UFs do not randomly originate over the umbra. Instead, they appear to be repeatedly triggered at locations with the lowest umbral intensity and the most powerful oscillations of Hα -0.04~nm intensity. GST magnetic field measurements using Near Infra-Red Imaging Spectropolarimeter (NIRIS) also showed that the dominant location of prevalent UF origin is co-spatial associated with the strongest fields in the umbra. Interface Region Imaging Spectrograph 149.0~nm images showed that no bright UV loops were anchored in the umbra in general and near the UF patches in particular suggesting that UFs and UWs alone can not be responsible for the origin of warm coronal loops. We thus conclude that the existence of locations with prevalent origin of UFs confirms the idea that they may be driven by a sub-surface source located near the axis of a flux rope, while the presence of several UFs trigger centers may indicate the complex structure of a sunspot umbra.

Authors: Vasyl Yurchyshyn, Ali Kilcik, Seray Sahin, Valentina Abramenko, Eun-Kyung Lim
Projects: BBSO/NST

Publication Status: ApJ, accepted
Last Modified: 2020-05-11 15:27
Go to main E-Print page  The PDFI_SS Electric Field Inversion Software  A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The origin of quasi-periodicities during circular ribbon flares
Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection
An Eruptive Circular-ribbon Flare with Extended Remote Brightenings
Additivity of relative magnetic helicity in finite volumes
3D propagation of relativistic solar protons through interplanetary space
Heating Rates for Protons and Electrons in Polar Coronal Holes: Empirical Constraints from the Ultraviolet Coronagraph Spectrometer
Comparison of Enhanced Absorption in He I 10830 in Observations and Modeling During the Early Phase of a Solar Flare
Radio Echo in the Turbulent Corona and Simulations of Solar Drift-Pair Radio Bursts
Solar Flare Arcade Modelling: Bridging the gap from 1D to 3D Simulations of Optically Thin Radiation
Dynamics of Late-Stage Reconnection in the 2017 September 10 Solar Flare
Polarisation and source structure of solar stationary type IV radio bursts
Statistical Analysis of the Relation between Coronal Mass Ejections and Solar Energetic Particles
Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares
Case study of multi-temperature coronal jets for emerging flux MHD models
The STIX Aspect System (SAS): The Optical Aspect System of the Spectrometer/Telescope for Imaging X-Rays (STIX) on Solar Orbiter
What determine Solar Flares Producing Interplanetary Type III Radio Bursts?
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University