E-Print Archive

There are 4236 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

A Survey of Computational Tools in Solar Physics View all abstracts by submitter

Monica Bobra   Submitted: 2020-05-13 12:09

'The SunPy Project developed a 13-question survey to understand the software and hardware usage of the solar physics community. Of the solar-physics community, 364 members across 35 countries responded to our survey. We found that 99±0.5% of respondents use software in their research and 66% use the Python scientific-software stack. Students are twice as likely as faculty, staff scientists, and researchers to use Python rather than Interactive Data Language (IDL). In this respect, the astrophysics and solar-physics communities differ widely: 78% of solar-physics faculty, staff scientists, and researchers in our sample uses IDL, compared with 44% of astrophysics faculty and scientists sampled by Momcheva and Tollerud (2015). 63±4% of respondents have not taken any computer-science courses at an undergraduate or graduate level. We also found that most respondents use consumer hardware to run software for solar-physics research. Although 82% of respondents work with data from space-based or ground-based missions, some of which (e.g. the Solar Dynamics Observatory and Daniel K. Inouye Solar Telescope) produce terabytes of data a day, 14% use a regional or national cluster, 5% use a commercial cloud provider, and 29% use exclusively a laptop or desktop. Finally, we found that 73±4% of respondents cite scientific software in their research, although only 42±3% do so routinely.'

Authors: Monica G. Bobra, Stuart J. Mumford, Russell J. Hewett, Steven D. Christe, Kevin Reardon, Sabrina Savage, Jack Ireland, Tiago M. D. Pereira, Bin Chen, and David Pérez-Suárez
Projects: None

Publication Status: Published in Solar Physics: Solar Physics, 295, 57 (2020)
Last Modified: 2020-05-14 08:56
Go to main E-Print page  HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare  Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University