E-Print Archive

There are 4291 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare View all abstracts by submitter

Suraj Sahu   Submitted: 2020-05-15 05:30

In this paper, we present a comprehensive study of the evolutionary phases of a major M6.6 long duration event (LDE) with special emphasize on its pre-flare phase. The event occurred in NOAA 12371 on 2015 June 22. A remarkable aspect of the event was an active pre-flare phase lasting for about an hour during which a hot EUV coronal channel was in build-up stage and displayed co-spatial hard X-ray (HXR) emission up to energies of 25 keV. As such, this is the first evidence of HXR coronal channel. The coronal magnetic field configuration based on NLFFF modeling clearly exhibited a magnetic flux rope (MFR) oriented along the polarity inversion line (PIL) and co-spatial with the coronal channel. We observed significant changes in the AR's photospheric magnetic field during an extended period of ≈42 hours in the form of rotation of sunspots, moving magnetic features, and flux cancellation along the PIL. Prior to the flare onset, the MFR underwent a slow rise phase (≈14 km s-1) for ≈12 min which we attribute to the faster build-up and activation of the MFR by tether-cutting reconnection occurring at multiple locations along the MFR itself. The sudden transition in the kinematic evolution of the MFR from the phase of slow to fast rise (≈109 km s-1 with acceleration ≈110 m/s2) precisely divides the pre-flare and impulsive phase of the flare, which points toward the feedback process between the early dynamics of the eruption and the strength of the flare magnetic reconnection.

Authors: Suraj Sahu, Bhuwan Joshi, Prabir K. Mitra, Astrid M. Veronig, V. Yurchyshyn

Publication Status: Accepted for publication in The Astrophysical Journal
Last Modified: 2020-05-17 22:34
Go to main E-Print page  The Drivers of Active Region Outflows into the Slow Solar Wind  A Survey of Computational Tools in Solar Physics  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University