E-Print Archive

There are 4257 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Forecasting Solar Cycle 25 Using Deep Neural Networks View all abstracts by submitter

Bernard Benson   Submitted: 2020-05-19 16:21

'With recent advances in the field of machine learning, the use of deep neural networks for time series forecasting has become more prevalent. The quasi-periodic nature of the solar cycle makes it a good candidate for applying time series forecasting methods. We employ a combination of WaveNet and Long Short-Term Memory neural networks to forecast the sunspot number using the years 1749 to 2019 and total sunspot area using the years 1874 to 2019 time series data for the upcoming Solar Cycle 25. Three other models involving the use of LSTMs and 1D ConvNets are also compared with our best model. Our analysis shows that the WaveNet and LSTM model is able to better capture the overall trend and learn the inherent long and short term dependencies in time series data. Using this method we forecast 11 years of monthly averaged data for Solar Cycle 25. Our forecasts show that the upcoming Solar Cycle 25 will have a maximum sunspot number around 106 19.75 and maximum total sunspot area around 1771 381.17. This indicates that the cycle would be slightly weaker than Solar Cycle 24.'

Authors: B. Benson, W.D. Pan, A. Prasad, G.A. Gary, Q. Hu
Projects: None

Publication Status: Published, Solar Physics.
Last Modified: 2020-05-20 12:08
Go to main E-Print page  Imaging and spectral study on the null point of a fan-spine structure during a solar flare  An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The origin of quasi-periodicities during circular ribbon flares
Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection
An Eruptive Circular-ribbon Flare with Extended Remote Brightenings
Additivity of relative magnetic helicity in finite volumes
3D propagation of relativistic solar protons through interplanetary space
Heating Rates for Protons and Electrons in Polar Coronal Holes: Empirical Constraints from the Ultraviolet Coronagraph Spectrometer
Comparison of Enhanced Absorption in He I 10830 in Observations and Modeling During the Early Phase of a Solar Flare
Radio Echo in the Turbulent Corona and Simulations of Solar Drift-Pair Radio Bursts
Solar Flare Arcade Modelling: Bridging the gap from 1D to 3D Simulations of Optically Thin Radiation
Dynamics of Late-Stage Reconnection in the 2017 September 10 Solar Flare
Polarisation and source structure of solar stationary type IV radio bursts
Statistical Analysis of the Relation between Coronal Mass Ejections and Solar Energetic Particles
Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares
Case study of multi-temperature coronal jets for emerging flux MHD models
The STIX Aspect System (SAS): The Optical Aspect System of the Spectrometer/Telescope for Imaging X-Rays (STIX) on Solar Orbiter
What determine Solar Flares Producing Interplanetary Type III Radio Bursts?
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University