E-Print Archive

There are 4499 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
f-mode strengthening from a localized bipolar subsurface magnetic field View all abstracts by submitter

Axel Brandenburg   Submitted: 2020-05-23 01:40

Recent numerical work in helioseismology has shown that a periodically varying subsurface magnetic field leads to a fanning of the f-mode, which emerges from the density jump at the surface. In an attempt to model a more realistic situation, we now modulate this periodic variation with an envelope, giving thus more emphasis on localized bipolar magnetic structures in the middle of the domain. Some notable findings are: (i) compared to the purely hydrodynamic case, the strength of the f-mode is significantly larger at high horizontal wavenumbers k, but the fanning is weaker for the localized subsurface magnetic field concentrations investigated here than the periodic ones studied earlier; (ii) when the strength of the magnetic field is enhanced at a fixed depth below the surface, the fanning of the f-mode in the kω diagram increases proportionally in such a way that the normalized f-mode strengths remain nearly the same in different such cases; (iii) the unstable Bloch modes reported previously in case of harmonically varying magnetic fields are now completely absent when more realistic localized magnetic field concentrations are imposed beneath the surface, thus suggesting that the Bloch modes are unlikely to be supported during most phases of the solar cycle; (iv) the f-mode strength appears to depend also on the depth of magnetic field concentrations such that it shows a relative decrement when the maximum of the magnetic field is moved to a deeper layer. We argue that detections of f-mode perturbations such as those being explored here could be effective tracers of solar magnetic fields below the photosphere before these are directly detectable as visible manifestations in terms of active regions or sunspots.

Authors: Authors:Nishant K. Singh, Harsha Raichur, Maarit J. Käpylä, Matthias Rheinhardt, Axel Brandenburg, Petri J. Käpylä
Projects: None

Publication Status: Geophys. Astro. Fluid 2020, 114, 196-212 (2020)
Last Modified: 2020-05-27 13:13
Go to main E-Print page  Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017.  II. Proposed interpretation  Imaging and spectral study on the null point of a fan-spine structure during a solar flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?
Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations
Slow magnetoacoustic oscillations in stellar coronal loops
Kink Oscillation of a Flux Rope During a Failed Solar Eruption
A publicly available multi-observatory data set of an enhanced network patch from the Photosphere
Type IV Radio Bursts and Associated Active Regions in the Sunspot Cycle 24
Theory of Fluid Instabilities in Partially Ionized Plasmas: An Overview
Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes
The Coupling of an EUV Coronal Wave and Ion Acceleration in a Fermi-LAT Behind-the-Limb Solar Flare
Reconciling Power Law Slopes in Solar Flare and Nanoflare Size Distributions
A Model of Homologous Confined and Ejective Eruptions Involving Kink Instability and Flux Cancellation
Detection of stellar-like abundance anomalies in the slow solar wind
Magnetosheath jet occurrence rate in relation to CMEs and SIRs
Microwave Perspective on Magnetic Breakout Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University