E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A new facility for airborne solar astronomy: NASA's WB-57 at the 2017 total solar eclipse View all abstracts by submitter

Amir Caspi   Submitted: 2020-06-09 12:37

NASA's WB-57 High Altitude Research Program provides a deployable, mobile, stratospheric platform for scientific research. Airborne platforms are of particular value for making coronal observations during total solar eclipses because of their ability both to follow the Moon's shadow and to get above most of the atmospheric airmass that can interfere with astronomical observations. We used the 2017 Aug 21 eclipse as a pathfinding mission for high-altitude airborne solar astronomy, using the existing high-speed visible-light and near-/mid-wave infrared imaging suite mounted in the WB-57 nose cone. In this paper, we describe the aircraft, the instrument, and the 2017 mission; operations and data acquisition; and preliminary analysis of data quality from the existing instrument suite. We describe benefits and technical limitations of this platform for solar and other astronomical observations. We present a preliminary analysis of the visible-light data quality and discuss the limiting factors that must be overcome with future instrumentation. We conclude with a discussion of lessons learned from this pathfinding mission and prospects for future research at upcoming eclipses, as well as an evaluation of the capabilities of the WB-57 platform for future solar astronomy and general astronomical observation.

Authors: Amir Caspi, Daniel B. Seaton, Constantine C. C. Tsang, Craig E. DeForest, Paul Bryans, Edward E. DeLuca, Steven Tomczyk, Joan T. Burkepile, Thomas 'Tony' Casey, John Collier, Donald 'DD' Darrow, Dominic Del Rosso, Daniel D. Durda, Peter T. Gallagher, Leon Golub, Matthew Jacyna, David 'DJ' Johnson, Philip G. Judge, Cary 'Diddle' Klemm, Glenn T. Laurent, Johanna Lewis, Charles J. Mallini, Thomas 'Duster' Parent, Timothy Propp, Andrew J. Steffl, Jeff Warner, Matthew J. West, John Wiseman, Mallory Yates, Andrei N. Zhukov, and the NASA WB-57 2017 Eclipse Observing Team
Projects: MLSO/CoMP,GOES/SUVI,Other

Publication Status: Published -- Caspi et al. 2020, ApJ, 895, 131; DOI: 10.3847/1538-4357/ab89a8
Last Modified: 2020-06-10 08:53
Go to main E-Print page  Standing MHD Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Plasma Environment: Surface Waves  Lyman-alpha Variability During Solar Flares Over Solar Cycle 24 Using GOES-15/EUVS-E  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University