E-Print Archive

There are 4396 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps View all abstracts by submitter

Egor Illarionov   Submitted: 2020-06-16 00:30

Identification of solar coronal holes (CHs) provides information both for operational space weather forecasting and long-term investigation of solar activity. Source data for the first problem are typically most recent solar disk observations, while for the second problem it is convenient to consider solar synoptic maps. Motivated by the idea that the concept of CHs should be similar for both cases we investigate universal models that can learn a CHs segmentation in disk images and reproduce the same segmentation in synoptic maps. We demonstrate that Convolutional Neural Networks (CNN) trained on daily disk images provide an accurate CHs segmentation in synoptic maps and their pole-centric projections. Using this approach we construct a catalog of synoptic maps for the period of 2010-20 based on SDO/AIA observations in the 193 Ångstrom wavelength. The obtained CHs synoptic maps are compared with magnetic synoptic maps in the time-latitude and time-longitude diagrams. The initial results demonstrate that while in some cases the CHs are associated with magnetic flux transport events there are other mechanisms contributing to the CHs formation and evolution. To stimulate further investigations the catalog of synoptic maps is published in open access.

Authors: Egor Illarionov, Alexander Kosovichev, Andrey Tlatov
Projects: SDO-AIA

Publication Status: ApJ (submitted)
Last Modified: 2020-06-17 13:07
Go to main E-Print page  A new method for estimating global coronal wave properties from their interaction with solar coronal holes  Multilevel Observations of the Oscillations in the First Active Region of the New Cycle  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 1723
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University